CONVERGENCE ANALYSIS OF A GALERKIN BOUNDARY ELEMENT METHOD FOR THE DIRICHLET LAPLACIAN EIGENVALUE PROBLEM

被引:23
|
作者
Steinbach, O. [1 ]
Unger, G. [1 ]
机构
[1] Graz Univ Technol, Inst Numer Math, A-8010 Graz, Austria
基金
奥地利科学基金会;
关键词
BEM; Laplacian eigenvalue problem; APPROXIMATION; STABILITY;
D O I
10.1137/100801986
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a rigorous convergence and error analysis of a Galerkin boundary element method for the Dirichlet Laplacian eigenvalue problem is presented. The formulation of the eigenvalue problem in terms of a boundary integral equation yields a nonlinear boundary integral operator eigenvalue problem. This nonlinear eigenvalue problem and its Galerkin approximation are analyzed in the framework of eigenvalue problems for holomorphic Fredholm operator-valued functions. The convergence of the approximation is shown and quasi-optimal error estimates are presented. Numerical experiments are given confirming the theoretical results.
引用
收藏
页码:710 / 728
页数:19
相关论文
共 50 条