Unconditionally secure device-independent quantum key distribution with only two devices

被引:50
作者
Barrett, Jonathan [1 ]
Colbeck, Roger [2 ]
Kent, Adrian [3 ,4 ]
机构
[1] Univ London, Egham TW20 0EX, Surrey, England
[2] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[3] Univ Cambridge, Ctr Math Sci, DAMTP, Ctr Quantum Informat & Fdn, Cambridge CB3 0WA, England
[4] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 06期
基金
瑞士国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Quantum entanglement;
D O I
10.1103/PhysRevA.86.062326
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Device-independent quantum key distribution is the task of using uncharacterized quantum devices to establish a shared key between two users. If a protocol is secure, regardless of the device behavior, it can be used to generate a shared key even if the supplier of the devices is malicious. To date, all device-independent quantum key distribution protocols that are known to be secure require separate isolated devices for each entangled pair, which is a significant practical limitation. We introduce a protocol that requires Alice and Bob to have only one device each. Although inefficient and unable to tolerate reasonable levels of noise, our protocol is unconditionally secure against an adversarial supplier limited only by locally enforced signaling constraints.
引用
收藏
页数:10
相关论文
共 29 条
[1]   Device-independent security of quantum cryptography against collective attacks [J].
Acin, Antonio ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Massar, Serge ;
Pironio, Stefano ;
Scarani, Valerio .
PHYSICAL REVIEW LETTERS, 2007, 98 (23)
[2]   From Bell's theorem to secure quantum key distribution [J].
Acin, Antonio ;
Gisin, Nicolas ;
Masanes, Lluis .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[3]  
[Anonymous], ARXIV10091833
[4]  
[Anonymous], ARXIVQUANTPH0501159
[5]   No signaling and quantum key distribution [J].
Barrett, J ;
Hardy, L ;
Kent, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (01)
[6]  
Barrett J., PHYS REV LE IN PRESS
[7]   Maximally nonlocal and monogamous quantum correlations [J].
Barrett, Jonathan ;
Kent, Adrian ;
Pironio, Stefano .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[8]  
Bennett C. H., 2014, Theoretical computer science, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[9]   WRINGING OUT BETTER BELL INEQUALITIES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
ANNALS OF PHYSICS, 1990, 202 (01) :22-56
[10]   Universally composable security: A new paradigm for cryptographic protocols [J].
Canetti, R .
42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, :136-145