Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations

被引:55
作者
Zhao, Caidi [1 ]
Caraballo, Tomas [2 ]
机构
[1] Wenzhou Univ, Dept Math, Wenzhou 325035, Zhejiang, Peoples R China
[2] Univ Seville, Fac Matemat, Dept Ecuac Diferenciales & Anal Numer, C Tarfia S-N, E-41012 Seville, Spain
关键词
Globally modified Navier-Stokes equations; Trajectory attractor; Trajectory statistical solution; Invariant measure; Asymptotic regularity; DISSIPATIVE DYNAMICAL-SYSTEMS; INVARIANT-MEASURES; 3-DIMENSIONAL SYSTEM; PULLBACK ATTRACTORS; WEAK SOLUTIONS; V-ATTRACTORS; BEHAVIOR;
D O I
10.1016/j.jde.2018.11.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We first prove the existence and regularity of the trajectory attractor for a three-dimensional system of globally modified Navier-Stokes equations. Then we use the natural translation semigroup and trajectory attractor to construct the trajectory statistical solutions in the trajectory space. In our construction the trajectory statistical solution is an invariant Borel probability measure, which is supported by the trajectory attractor and is invariant under the action of the translation semigroup. As a byproduct of the regularity of the trajectory attractor, we obtain the asymptotic regularity of the trajectory statistical solution in the sense that it is supported by a set in the trajectory space in which all weak solutions are in fact strong solutions. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:7205 / 7229
页数:25
相关论文
共 38 条
[11]  
Claudia B., 2017, J MATH ANAL APPL, V455, P1234
[12]   GLOBAL REGULARITY AND ASYMPTOTIC BEHAVIOR OF MODIFIED NAVIER-STOKES EQUATIONS WITH FRACTIONAL DISSIPATION [J].
Dong, Bo-Qing ;
Song, Juan .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (01) :57-79
[13]  
Foias C., 1976, ANN MAT PUR APPL, V111, P307
[14]   PROPERTIES OF TIME-DEPENDENT STATISTICAL SOLUTIONS OF THE THREE-DIMENSIONAL NAVIER-STOKES EQUATIONS [J].
Foias, Ciprian ;
Rosa, Ricardo M. S. ;
Temam, Roger .
ANNALES DE L INSTITUT FOURIER, 2013, 63 (06) :2515-2573
[15]   On Regularity Criteria for the 3D Incompressible MHD Equations Involving One Velocity Component [J].
Jia, Xuanji ;
Zhou, Yong .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (01) :187-206
[16]   The weak connectedness of the attainability set of weak solutions of the three-dimensional Navier-Stokes equations [J].
Kloeden, P. E. ;
Valero, J. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2082) :1491-1508
[17]   Pullback V-attractors of the 3-dimensional globally modified Navier-Stokes equations [J].
Kloeden, Peter E. ;
Langa, Jose A. ;
Real, Jose .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2007, 6 (04) :937-955
[18]   EQUIVALENCE OF INVARIANT MEASURES AND STATIONARY STATISTICAL SOLUTIONS FOR THE AUTONOMOUS GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS [J].
Kloeden, Peter E. ;
Marin-Rubio, Pedro ;
Real, Jose .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (03) :785-802
[19]  
Ladyzhenskaya O.A., 1969, The Mathematical Theory of Viscous Incompressible Flow
[20]   INVARIANT MEASURES FOR COMPLEX-VALUED DISSIPATIVE DYNAMICAL SYSTEMS AND APPLICATIONS [J].
Li, Xin ;
Shen, Wenxian ;
Sun, Chunyou .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (06) :2427-2446