Cosmic coincidence and asymmetric dark matter in a Stueckelberg extension

被引:45
作者
Feng, Wan-Zhe [1 ]
Nath, Pran [1 ]
Peim, Gregory [1 ]
机构
[1] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
COSMOLOGICAL BARYON; PROTON STABILITY; BARYOGENESIS; SUPERGRAVITY; SUPERSYMMETRY; PARTICLES; SPECTRUM; SEARCH; ORIGIN; MODEL;
D O I
10.1103/PhysRevD.85.115016
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the possibility of the cosmic coincidence generating the ratio of baryon asymmetry to dark matter in a Stueckelberg U(1) extension of the standard model and of the minimal supersymmetric standard model. For the U(1), we choose L-mu - L-T which is anomaly free and can be gauged. The dark matter candidate arising from this extension is a singlet of the standard model gauge group but is charged under L-mu - L-T. Solutions to the Boltzmann equations for relics in the presence of asymmetric dark matter are discussed. It is shown that the ratio of the baryon asymmetry to dark matter consistent with the current WMAP data, i.e., the cosmic coincidence, can be successfully explained in this model with the depletion of the symmetric component of dark matter from resonant annihilation via the Stueckelberg gauge boson. For the extended minimal supersymmetric standard model model, it is shown that one has a two-component dark matter picture with asymmetric dark matter being the dominant component and the neutralino being the subdominant component (i.e., with relic density a small fraction of the WMAP cold dark matter value). Remarkably, the subdominant component can be detected in direct detection experiments such as SuperCDMS and XENON-100. Further, it is shown that the class of Stueckelberg models with a gauged L-mu - L-T will produce a dramatic signature at a muon collider with the sigma(mu(+)mu(-) -> mu(+)mu(-), T+T-) showing a detectable Z' resonance while sigma(mu(+)mu(-) -> e(+)e(-)) is devoid of this resonance. Within the above frameworks, we discuss several broad classes of models both above and below the electroweak phase transition temperature. Asymmetric dark matter arising from a U(1)(B-L) Stueckelberg extension is also briefly discussed. Finally, in the models we propose the asymmetric dark matter does not oscillate and there is no danger of it being washed out from oscillations.
引用
收藏
页数:22
相关论文
共 149 条
[1]   Strong Constraints on the Rare Decays Bs0 → μ+μ- and B0 → μ+μ- [J].
Aaij, R. ;
Abellan Beteta, C. ;
Adametz, A. ;
Adeva, B. ;
Adinolfi, M. ;
Adrover, C. ;
Affolder, A. ;
Ajaltouni, Z. ;
Albrecht, J. ;
Alessio, F. ;
Alexander, M. ;
Ali, S. ;
Alkhazov, G. ;
Alvarez Cartelle, P. ;
Alves, A. A., Jr. ;
Amato, S. ;
Amhis, Y. ;
Anderson, J. ;
Appleby, R. B. ;
Gutierrez, O. Aquines ;
Archilli, F. ;
Artamonov, A. ;
Artuso, M. ;
Aslanides, E. ;
Auriemma, G. ;
Bachmann, S. ;
Back, J. J. ;
Balagura, V. ;
Baldini, W. ;
Barlow, R. J. ;
Barschel, C. ;
Barsuk, S. ;
Barter, W. ;
Bates, A. ;
Bauer, C. ;
Bauer, Th ;
Bay, A. ;
Beddow, J. ;
Bediaga, I. ;
Belogurov, S. ;
Belous, K. ;
Belyaev, I. ;
Ben-Haim, E. ;
Benayoun, M. ;
Bencivenni, G. ;
Benson, S. ;
Benton, J. ;
Bernet, R. ;
Bettler, M. -O. ;
van Beuzekom, M. .
PHYSICAL REVIEW LETTERS, 2012, 108 (23)
[2]   Search for the rare decay Bs0 → μ+μ- [J].
Abazov, V. M. ;
Abbott, B. ;
Abolins, M. ;
Acharya, B. S. ;
Adams, M. ;
Adams, T. ;
Alexeev, G. D. ;
Alkhazov, G. ;
Alton, A. ;
Alverson, G. ;
Alves, G. A. ;
Ancu, L. S. ;
Aoki, M. ;
Arnoud, Y. ;
Arov, M. ;
Askew, A. ;
Asman, B. ;
Atramentov, O. ;
Avila, C. ;
BackusMayes, J. ;
Badaud, F. ;
Bagby, L. ;
Baldin, B. ;
Bandurin, D. V. ;
Banerjee, S. ;
Barberis, E. ;
Barfuss, A. -F. ;
Baringer, P. ;
Barreto, J. ;
Bartlett, J. F. ;
Bassler, U. ;
Beale, S. ;
Bean, A. ;
Begalli, M. ;
Begel, M. ;
Belanger-Champagne, C. ;
Bellantoni, L. ;
Benitez, J. A. ;
Beria, S. B. ;
Bernardi, G. ;
Bernhard, R. ;
Bertram, I. ;
Besancon, M. ;
Beuselinck, R. ;
Bezzubov, V. A. ;
Bhat, P. C. ;
Bhatnagar, V. ;
Blazey, G. ;
Blessing, S. ;
Bloom, K. .
PHYSICS LETTERS B, 2010, 693 (05) :539-544
[3]   Kinetic mixing of the photon with hidden U(1)s in string phenomenology [J].
Abel, S. A. ;
Goodsell, M. D. ;
Jaeckel, J. ;
Khoze, V. V. ;
Ringwald, A. .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (07)
[4]   Baryon number in warped grand unified theories: model building and (dark matter related) phenomenology [J].
Agashe, K ;
Servant, G .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (02) :27-92
[5]   Laser experiments explore the hidden sector [J].
Ahlers, M. ;
Gies, H. ;
Jaeckel, J. ;
Redondo, J. ;
Ringwald, A. .
PHYSICAL REVIEW D, 2008, 77 (09)
[6]   Higgs boson mass predictions in supergravity unification, recent LHC-7 results, and dark matter [J].
Akula, Sujeet ;
Altunkaynak, Baris ;
Feldman, Daniel ;
Nath, Pran ;
Peim, Gregory .
PHYSICAL REVIEW D, 2012, 85 (07)
[7]   Naturalness, supersymmetry and implications for LHC and dark matter [J].
Akula, Sujeet ;
Liu, Mengxi ;
Nath, Pran ;
Peim, Gregory .
PHYSICS LETTERS B, 2012, 709 (03) :192-199
[8]   GLOBAL ANALYSIS OF PRECISION ELECTROWEAK DATA WITHIN THE MINIMAL SUPERSYMMETRIC EXTENSION OF THE STANDARD MODEL [J].
ELLIS, J ;
FOGLI, GL ;
LISI, E .
NUCLEAR PHYSICS B, 1993, 393 (1-2) :3-22
[9]  
An H., 2011, PHYS REV LETT, V107
[10]   Energy dependence of direct detection cross section for asymmetric mirror dark matter [J].
An, Haipeng ;
Chen, Shao-Long ;
Mohapatra, Rabindra N. ;
Nussinov, Shmuel ;
Zhang, Yue .
PHYSICAL REVIEW D, 2010, 82 (02)