Dynamic multiobective optimization of power plant using PSO techniques

被引:0
|
作者
Heo, JS [1 ]
Lee, KY [1 ]
Garduno-Ramirez, R [1 ]
机构
[1] Penn State Univ, Dept Elect Engn, University Pk, PA 16802 USA
来源
2005 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS, 1-3 | 2005年
关键词
coordinated control; multiobjective optimization; power plant; dynamic load demand; pressure setpoint scheduling; particle swarm optimization;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Coordinate Control Scheme (CCS) requires references to provide control inputs to a power plant. The references are obtained by mapping the unit load demand to pressure set-point. In order to achieve the optimal power plant operation, the mapping should be optimized under a dynamic environment by considering the multiobjectives of the power system. In this paper, the multiobjective optimal power plant operation will be realized through the on-line optimal mapping between the dynamic unit load demand and pressure set-point using a modern heuristic method, the Particle Swarm Optimization (PSO). The multiobjective optimization is performed in the reference governor of a Fossil Fuel Power Unit (FFPU). Moreover, variations of the PSO technique, such as Hybrid PSO (HPSO), Evolutionary PSO (EPSO), and Constriction Factor Approach (CFA), will be introduced and the comparison will be made on the dynamic multiobjective optimization of a power plant.
引用
收藏
页码:60 / 65
页数:6
相关论文
共 50 条
  • [1] Multiobective optimization using compromise programming and an immune algorithm
    Campelo, Felipe
    Guimaraes, Frederico G.
    Igarashi, Hajime
    IEEE TRANSACTIONS ON MAGNETICS, 2008, 44 (06) : 982 - 985
  • [2] Optimization of coal handling system performability for a thermal power plant using PSO algorithm
    Malik, Subhash
    Tewari, P. C.
    GREY SYSTEMS-THEORY AND APPLICATION, 2020, 10 (03) : 359 - 376
  • [3] Dynamic Optimization using Cultural based PSO
    Daneshyari, Moayed
    Yen, Gary G.
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 509 - 516
  • [4] RAM analysis and availability optimization of thermal power plant water circulation system using PSO
    Jagtap, Hanumant P.
    Bewoor, Anand K.
    Kumar, Ravinder
    Ahmadi, Mohammad Hossein
    Assad, Mamdouh El Haj
    Sharifpur, Mohsen
    ENERGY REPORTS, 2021, 7 : 1133 - 1153
  • [5] Integrated multiobective optimization and a priori preferences using genetic algorithms
    Sanchis, Javier
    Martinez, Miguel A.
    Blasco, Xavier
    INFORMATION SCIENCES, 2008, 178 (04) : 931 - 951
  • [6] Performance optimization and improvement of a flash-binary geothermal power plant using zeotropic mixtures with PSO algorithm
    Kolahi, Mohammad-Reza
    Nemati, Arash
    Yari, Mortaza
    GEOTHERMICS, 2018, 74 : 45 - 56
  • [7] Multi Objective Optimization for Optimal Power Flow with IPFC Using PSO
    Praveen, J.
    Rao, B. Srinivasa
    2016 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL ENERGY SYSTEMS (ICEES), 2016, : 85 - 90
  • [8] Multiobjective control of power plants using particle swarm optimization techniques
    Heo, Jin S.
    Lee, Kwang Y.
    Garduno-Ramirez, Raul
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (02) : 552 - 561
  • [9] Soft computing for availability optimization of a crushing system of sugar plant using PSO
    Aggarwal, Anil Kr
    Kumar, Amit
    INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2021, 38 (09) : 1947 - 1963
  • [10] Dynamic global power extraction from partially shaded photovoltaic using deep recurrent neural network and improved PSO techniques
    Farh, Hassan M. H.
    Eltamaly, Ali M.
    Ibrahim, Ahmed B.
    Othman, Mohd F.
    Al-Saud, Mamdooh S.
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2019, 29 (09)