Cell-Specific and pH-Activatable Rubyrin-Loaded Nanoparticles for Highly Selective Near-Infrared Photodynamic Therapy against Cancer

被引:390
作者
Tian, Jiangwei [1 ]
Ding, Lin [1 ]
Xu, Hai-Jun [2 ]
Shen, Zhen [2 ]
Ju, Huangxian [1 ]
Jia, Li [1 ]
Bao, Lei [1 ]
Yu, Jun-Sheng [1 ]
机构
[1] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Analyt Chem Life Sci, Nanjing 210093, Jiangsu, Peoples R China
[2] Nanjing Univ, Sch Chem & Chem Engn, State Key Lab Coordinat Chem, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLET OXYGEN GENERATION; DRUG-DELIVERY; TUMORS; SENSITIZER; PORPHYRIN; DEATH;
D O I
10.1021/ja408286k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Spatiotemporal control of singlet oxygen (O-1(2)) release is a major challenge for photodynamic therapy (PDT) against cancer with high therapeutic efficacy and minimum side effects. Here a selenium-rubyrin (NMe2Se4N2)-loaded nanoparticle functionalized with folate (FA) was designed and synthesized as an acidic pH-activatable targeted photosensitizer. The nanoparticles could specifically recognize cancer cells via the FA-FA receptor binding and were selectively taken up by cancer cells via receptor-mediated endocytosis to enter lysosomes, in which NMe2Se4N2 was activated to produce O-1(2). The pH-controllable release of O-1(2) specially damaged the lysosomes and thus killed cancer cells in a lysosome-associated pathway. The introduction of selenium into the rubyrin core enhanced the O-1(2) generation efficiency due to the heavy atom effect, and the substitution of dimethylaminophenyl moiety at meso-position led to the pH-controllable activation of NMe2Se4N2. Under near-infrared (NIR) irradiation, NMe2Se4N2 possessed high singlet oxygen quantum yield (Phi(Delta)) at an acidic pH (Phi(Delta) = 0.69 at pH 5.0 at 635 nm) and could be deactivated at physiological pH (Phi(Delta) = 0.06 at pH 7.4 at 635 nm). The subcellular location-confined pH-activatable photosensitization at NIR region and the cancer cell-targeting feature led to excellent capability to selectively kill cancer cells and prevent the damage to normal cells, which greatly lowered the side effects. Through intravenous injection of FA-NMe2Se4N2 nanoparticles in tumor-bearing mice, tumor elimination was observed after NIR irradiation. This work presents a new paradigm for specific PDT against cancer and provides a new avenue for preparation of highly efficient photosensitizers.
引用
收藏
页码:18850 / 18858
页数:9
相关论文
共 50 条
[1]   Tuning Photosensitized Singlet Oxygen Generation Efficiency of Novel Aza-BODIPY Dyes [J].
Adarsh, Nagappanpillai ;
Avirah, Rekha R. ;
Ramaiah, Danaboyina .
ORGANIC LETTERS, 2010, 12 (24) :5720-5723
[2]   The present and future role of photodynamic therapy in cancer treatment [J].
Brown, SB ;
Brown, EA ;
Walker, I .
LANCET ONCOLOGY, 2004, 5 (08) :497-508
[3]   Molecular effectors of multiple cell death pathways initiated by photodynamic therapy [J].
Buytaert, Esther ;
Dewaele, Michael ;
Agostinis, Patrizia .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2007, 1776 (01) :86-107
[4]   Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization [J].
Castano, Ana P. ;
Demidova, Tatiana N. ;
Hamblin, Michael R. .
PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2004, 1 (04) :279-293
[5]   Imaging and Photodynamic Therapy: Mechanisms, Monitoring, and Optimization [J].
Celli, Jonathan P. ;
Spring, Bryan Q. ;
Rizvi, Imran ;
Evans, Conor L. ;
Samkoe, Kimberley S. ;
Verma, Sarika ;
Pogue, Brian W. ;
Hasan, Tayyaba .
CHEMICAL REVIEWS, 2010, 110 (05) :2795-2838
[6]   Nanoparticles in photodynamic therapy: An emerging paradigm [J].
Chatterjee, Dev Kumar ;
Fong, Li Shan ;
Zhang, Yong .
ADVANCED DRUG DELIVERY REVIEWS, 2008, 60 (15) :1627-1637
[7]  
Cheng L, 2012, ACS NANO, V6, P5605, DOI [10.1021/nn304719q, 10.1021/nn301539m]
[8]   Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer [J].
Cheng, Yu ;
Samia, Anna C. ;
Meyers, Joseph D. ;
Panagopoulos, Irene ;
Fei, Baowei ;
Burda, Clemens .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10643-10647
[9]   In Vivo Targeted Deep-Tissue Photodynamic Therapy Based on Near-Infrared Light Triggered Upconversion Nanoconstruct [J].
Cui, Sisi ;
Yin, Deyan ;
Chen, Yuqi ;
Di, Yingfeng ;
Chen, Haiyan ;
Ma, Yuxiang ;
Achilefu, Samuel ;
Gu, Yueqing .
ACS NANO, 2013, 7 (01) :676-688
[10]   Photodynamic therapy for cancer [J].
Dolmans, DEJGJ ;
Fukumura, D ;
Jain, RK .
NATURE REVIEWS CANCER, 2003, 3 (05) :380-387