An Attention-Based 3D CNN With Multi-Scale Integration Block for Alzheimer's Disease Classification

被引:32
作者
Wu, Yuanchen [1 ]
Zhou, Yuan [2 ]
Zeng, Weiming [1 ]
Qian, Qian [3 ]
Song, Miao [1 ]
机构
[1] Shanghai Maritime Univ, Coll Informat Engn, Shanghai 201306, Peoples R China
[2] Shanghai Maritime Univ, Logist Engn Coll, Shanghai 201306, Peoples R China
[3] Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Comp Technol Applicat, Kunming 650504, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Three-dimensional displays; Computational modeling; Brain modeling; Solid modeling; Convolutional neural networks; Convolution; Alzheimer's disease; 3D CNN; multi-scale integration; soft attention; ATROPHY; DEMENTIA; SUBTYPES;
D O I
10.1109/JBHI.2022.3197331
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Convolutional Neural Networks (CNNs) have recently been introduced to Alzheimer's Disease (AD) diagnosis. Despite their encouraging prospects, most of the existing models only process AD-related brain atrophy on a single spatial scale, and have high computational complexity. Here, we propose a novel Attention-based 3D Multi-scale CNN model (AMSNet), which can better capture and integrate multiple spatial-scale features of AD, with a concise structure. For the binary classification between 384 AD patients and 389 Cognitively Normal (CN) controls using sMRI scannings, AMSNet achieves remarkable overall performance (91.3% accuracy, 88.3% sensitivity, and 94.2% specificity) with fewer parameters and lower computational load, generally surpassing seven comparative models. Furthermore, AMSNet generalizes well in other AD-related classification tasks, such as the three-way classification (AD-MCI-CN). Our results manifest the feasibility and efficiency of the proposed multi-scale spatial feature integration and attention mechanism used in AMSNet for AD classification, and provide potential biomarkers to explore the neuropathological causes of AD.
引用
收藏
页码:5665 / 5673
页数:9
相关论文
共 43 条
[1]   2018 Alzheimer's disease facts and figures [J].
不详 .
ALZHEIMERS & DEMENTIA, 2018, 14 (03) :367-425
[2]  
[Anonymous], 2016, P ICLR
[3]  
Bäckström K, 2018, I S BIOMED IMAGING, P149, DOI 10.1109/ISBI.2018.8363543
[4]   Precuneus and Cingulate Cortex Atrophy and Hypometabolism in Patients with Alzheimer's Disease and Mild Cognitive Impairment: MRI and 18F-FDG PET Quantitative Analysis Using FreeSurfer [J].
Bailly, Matthieu ;
Destrieux, Christophe ;
Hommet, Caroline ;
Mondon, Karl ;
Cottier, Jean-Philippe ;
Beaufils, Emilie ;
Vierron, Emilie ;
Vercouillie, Johnny ;
Ibazizene, Meziane ;
Voisin, Thierry ;
Payoux, Pierre ;
Barre, Louisa ;
Camus, Vincent ;
Guilloteau, Denis ;
Ribeiro, AndMaria-Joao .
BIOMED RESEARCH INTERNATIONAL, 2015, 2015
[5]  
Bakkouri I, 2019, INT WORK CONTENT MUL
[6]   Comprehensive Review on Alzheimer's Disease: Causes and Treatment [J].
Breijyeh, Zeinab ;
Karaman, Rafik .
MOLECULES, 2020, 25 (24)
[7]   Deep Learning-Based Segmentation in Classification of Alzheimer's Disease [J].
Buvaneswari, P. R. ;
Gayathri, R. .
ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (06) :5373-5383
[8]   Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer's disease images [J].
Camara, Oscar ;
Schnabel, Julia A. ;
Ridgway, Gerard R. ;
Crum, William R. ;
Douiri, Abdel ;
Scahill, Rachael I. ;
Hill, Derek L. G. ;
Fox, Nick C. .
NEUROIMAGE, 2008, 42 (02) :696-709
[9]   Classification of MR Brain Images by Combination of Multi-CNNs for AD Diagnosis [J].
Cheng, Danni ;
Liu, Manhua ;
Fu, Jianliang ;
Wang, Yaping .
NINTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2017), 2017, 10420
[10]   Strongly reduced volumes of putamen and thalamus in Alzheimers disease: an MRI study [J].
de Jong, L. W. ;
van der Hiele, K. ;
Veer, I. M. ;
Houwing, J. J. ;
Westendorp, R. G. J. ;
Bollen, E. L. E. M. ;
de Bruin, P. W. ;
Middelkoop, H. A. M. ;
van Buchem, M. A. ;
van der Grond, J. .
BRAIN, 2008, 131 :3277-3285