Recurrent noise-induced phase singularities in drifting patterns

被引:3
作者
Clerc, M. G. [1 ]
Coulibaly, S. [2 ]
del Campo, F. [1 ]
Garcia-Nustes, M. A. [3 ]
Louvergneaux, E. [2 ]
Wilson, M. [2 ]
机构
[1] Univ Chile, FCFM, Dept Fis, Santiago, Chile
[2] Univ Lille 1, CNRS UMR 8523, Lab Phys Lasers Atomes & Mol, F-59655 Villeneuve Dascq, France
[3] Pontificia Univ Catolica Valparaiso, Inst Fis, Valparaiso, Chile
来源
PHYSICAL REVIEW E | 2015年 / 92卷 / 05期
关键词
HOLE SOLUTIONS; INSTABILITIES; INTERMITTENCY; DYNAMICS;
D O I
10.1103/PhysRevE.92.050902
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that the key ingredients for creating recurrent traveling spatial phase defects in drifting patterns are a noise-sustained structure regime together with the vicinity of a phase transition, that is, a spatial region where the control parameter lies close to the threshold for pattern formation. They both generate specific favorable initial conditions for local spatial gradients, phase, and/or amplitude. Predictions from the stochastic convective Ginzburg-Landau equation with real coefficients agree quite well with experiments carried out on a Kerr medium submitted to shifted optical feedback that evidence noise-induced traveling phase slips and vortex phase-singularities.
引用
收藏
页数:6
相关论文
共 42 条
[1]   Noisy precursors in one-dimensional patterns [J].
Agez, G ;
Szwaj, C ;
Louvergneaux, E ;
Glorieux, P .
PHYSICAL REVIEW A, 2002, 66 (06) :4
[2]   Two-dimensional noise-sustained structures in optics: Theory and experiments [J].
Agez, G. ;
Glorieux, P. ;
Taki, M. ;
Louvergneaux, E. .
PHYSICAL REVIEW A, 2006, 74 (04)
[3]  
AKHMANOV SA, 1988, JETP LETT+, V47, P707
[4]   Defects in spatiotemporal diagrams and their relations to phase coherence and lack of observability [J].
Amroun-Aliane, Dalila ;
Pastur, Luc ;
Letellier, Christophe .
PHYSICAL REVIEW E, 2011, 83 (05)
[5]   FORMATIONS OF SPATIAL PATTERNS AND HOLES IN THE GENERALIZED GINZBURG-LANDAU EQUATION [J].
BEKKI, N ;
NOZAKI, K .
PHYSICS LETTERS A, 1985, 110 (03) :133-135
[6]   ESTIMATING AND INTERPRETING THE INSTANTANEOUS FREQUENCY OF A SIGNAL .1. FUNDAMENTALS [J].
BOASHASH, B .
PROCEEDINGS OF THE IEEE, 1992, 80 (04) :520-538
[7]   Bekki-Nozaki amplitude holes in hydrothermal nonlinear waves [J].
Burguete, J ;
Chaté, H ;
Daviaud, F ;
Mukolobwiez, N .
PHYSICAL REVIEW LETTERS, 1999, 82 (16) :3252-3255
[8]   Experimental Observation of Dark Solitons on the Surface of Water [J].
Chabchoub, A. ;
Kimmoun, O. ;
Branger, H. ;
Hoffmann, N. ;
Proment, D. ;
Onorato, M. ;
Akhmediev, N. .
PHYSICAL REVIEW LETTERS, 2013, 110 (12)
[9]   SPATIOTEMPORAL INTERMITTENCY REGIMES OF THE ONE-DIMENSIONAL COMPLEX GINZBURG-LANDAU EQUATION [J].
CHATE, H .
NONLINEARITY, 1994, 7 (01) :185-204
[10]   Front propagation sustained by additive noise [J].
Clerc, M. G. ;
Falcon, C. ;
Tirapegui, E. .
PHYSICAL REVIEW E, 2006, 74 (01)