A family of super congruences involving multiple harmonic sums

被引:4
作者
Mccoy, Megan [1 ]
Thielen, Kevin [1 ]
Wang, Liuquan [2 ]
Zhao, Jianqiang [3 ]
机构
[1] Eckerd Coll, Dept Math, St Petersburg, FL 33711 USA
[2] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[3] Bishops Sch La Jolla, Dept Math, La Jolla, CA 92037 USA
关键词
Multiple harmonic sums; Bernoulli numbers; super congruences; CURIOUS CONGRUENCE; BERNOULLI NUMBERS; MELLIN TRANSFORMS; INTEGRALS;
D O I
10.1142/S1793042117500075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years, the congruence Sigma(i+j+k=p) (i, j, k>0) 1/ijk equivalent to -2B(p-3) (mod p), first discovered by the last author has been generalized by either increasing the number of indices and considering the corresponding super congruences, or by considering the alternating version of multiple harmonic sums. In this paper, we prove a family of similar super congruences modulo prime powers p(r) with the indices summing up to mp(r) where m is coprime to p, and where all the indices are also coprime to p.
引用
收藏
页码:109 / 128
页数:20
相关论文
共 19 条
[1]  
[Anonymous], 1996, A=B.
[2]   Harmonic sums and Mellin transforms [J].
Blümlein, J .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 79 :166-168
[3]   Relations between harmonic sums in massless QCD calculations [J].
Blümlein, J .
FEW-BODY SYSTEMS, 2005, 36 (1-4) :29-34
[4]   TABLE OF INTEGRALS AND FORMULAS FOR FEYNMAN DIAGRAM CALCULATIONS [J].
DEVOTO, A ;
DUKE, DW .
RIVISTA DEL NUOVO CIMENTO, 1984, 7 (06) :1-39
[5]  
Hoffman ME, 2005, DEV MATH, V14, P51
[6]   A simple proof of a curious congruence by Zhao [J].
Ji, CG .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) :3469-3472
[7]  
Pilehrood KH, 2014, T AM MATH SOC, V366, P3131
[8]  
Shen Z., 2008, INT J NUMBER THEORY, V4, P73
[9]  
Shen Z., 2015, PREPRINT
[10]  
Shen Z., 2011, J THEOR NOMBR BORDX, V23, P259