Sex-Specific Genomic Biomarkers for Individualized Treatment of Life-Threatening Diseases

被引:3
作者
Moon, Hojin [1 ]
Lopez, Karen L. [1 ]
Lin, Grace I. [2 ]
Chen, James J. [3 ,4 ,5 ]
机构
[1] Calif State Univ Long Beach, Dept Math & Stat, Long Beach, CA 90840 USA
[2] Univ Calif Santa Cruz, Dept Comp Sci, Santa Cruz, CA 95064 USA
[3] US FDA, Div Bioinformat & Biostat, Natl Ctr Toxicol Res, Jefferson, AR 72079 USA
[4] China Med Univ, Grad Inst Biostat, Taichung, Taiwan
[5] China Med Univ, Biostat Ctr, Taichung, Taiwan
关键词
GENE-EXPRESSION; SELECTION; CANCER; CLASSIFICATION;
D O I
10.1155/2013/393020
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Numerous studies have demonstrated sex differences in drug reactions to the same drug treatment, steering away from the traditional view of one-size-fits-all medicine. A premise of this study is that the sex of a patient influences difference in disease characteristics and risk factors. In this study, we intend to exploit and to obtain better sex-specific biomarkers from gene-expression data. We propose a procedure to isolate a set of important genes as sex-specific genomic biomarkers, which may enable more effective patient treatment. A set of sex-specific genes is obtained by a variable importance ranking using a combination of cross-validation methods. The proposed procedure is applied to three gene-expression datasets.
引用
收藏
页码:661 / 667
页数:7
相关论文
共 17 条
[1]  
Ahn H., 2009, STAT BIOINFORMATICS
[2]   Identifying high-dimensional biomarkers for personalized medicine via variable importance ranking [J].
Baek, Songjoon ;
Moon, Hojin ;
Ahn, Hongshik ;
Kodell, Ralph L. ;
Lin, Chien-Ju ;
Chen, James J. .
JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2008, 18 (05) :853-868
[3]   Development of biomarker classifiers from high-dimensional data [J].
Baek, Songjoon ;
Tsai, Chen-An ;
Chen, James J. .
BRIEFINGS IN BIOINFORMATICS, 2009, 10 (05) :537-546
[4]   Selection of relevant features and examples in machine learning [J].
Blum, AL ;
Langley, P .
ARTIFICIAL INTELLIGENCE, 1997, 97 (1-2) :245-271
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Gene selection and classification of microarray data using random forest -: art. no. 3 [J].
Díaz-Uriarte, R ;
de Andrés, SA .
BMC BIOINFORMATICS, 2006, 7 (1)
[7]   Comparison of discrimination methods for the classification of tumors using gene expression data [J].
Dudoit, S ;
Fridlyand, J ;
Speed, TP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2002, 97 (457) :77-87
[8]   Gene selection for cancer classification using support vector machines [J].
Guyon, I ;
Weston, J ;
Barnhill, S ;
Vapnik, V .
MACHINE LEARNING, 2002, 46 (1-3) :389-422
[9]   Microarray gene expression profiling of B-cell chronic lymphocytic leukemia subgroups defined by genomic aberrations and VH mutation status [J].
Haslinger, C ;
Schweifer, N ;
Stilgenbauer, S ;
Döhner, H ;
Lichter, P ;
Kraut, N ;
Stratowa, C ;
Abseher, R .
JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (19) :3937-3949
[10]  
Homsi Jade, 2005, Cancer Control, V12, P223