Physicochemical characteristics of poly(vinylidene fluoride-hexafluoropropylene)-alumina for mesocarbon microbeads versus LiNi1/3Mn1/3Co1/3O2 Li-ion polymer cells

被引:7
作者
Manikandan, P. [1 ]
Kousalya, S. [2 ]
Periasamy, P. [1 ]
机构
[1] CSIR, Cent Electrochem Res Inst, Electrochem Power Sources Div, Karaikkudi 630006, Tamil Nadu, India
[2] PSGR Krishnammal Coll Women, Coimbatore 641004, Tamil Nadu, India
关键词
Polymers; Ceramics; Infrared spectroscopy; Electrochemical properties; COMPOSITE POLYMER; ELECTROCHEMICAL PROPERTIES; LITHIUM; ELECTROLYTES; BATTERIES; PERFORMANCE; MEMBRANE;
D O I
10.1016/j.jpcs.2013.05.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membranes based on the composite gel polymer electrolyte (CGPE) system have been prepared through the solution casting method using poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)), nanosized alumina ceramics (Al2O3) and 1 M LiCF3SO3 salt dissolved in the mixture of (1:1) ethylene carbonate, dimethyl carbonate (EC+DMC) solvents. Physicochemical characteristics viz., structural, electrochemical properties of these membranes have been analyzed. The optimum composition of 10 wt% Al2O3 with (P(VdF-HFP)) and 1 M LiCF3SO3 in EC+DMC showed a higher ionic conductivity of 7.1047 x 10(-3) S cm(-1), electrochemical stability of 4.9 V (CGPE-10, 30 degrees C) which can be attributed to honey-comb structure. This Li/CGPE-10/LiNi1/3Mn1/3Co1/3O2 cell delivered significant enhancement in charge-discharge studies viz., 186 mA h g(-1) (1st) and good capacity retention similar to 90% (50th) in the voltage range 2.5-4.6 V at 0.1 C rate. Also, corresponding Li-ion polymer cell (MCMB/CGPE-10/LiNi1/3Mn1/3Co1/3O2) yielded proportionate 2.38 mA h and the capacity retention similar to 95% at the 50th cycle. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1492 / 1498
页数:7
相关论文
共 40 条
[11]   Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides [J].
Chung, SH ;
Wang, Y ;
Persi, L ;
Croce, F ;
Greenbaum, SG ;
Scrosati, B ;
Plichta, E .
JOURNAL OF POWER SOURCES, 2001, 97-8 :644-648
[12]   Advanced electrolyte and electrode materials for lithium polymer batteries [J].
Croce, F ;
D'Epifanio, A ;
Hassoun, J ;
Reale, P ;
Scrosati, B .
JOURNAL OF POWER SOURCES, 2003, 119 :399-402
[13]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[14]   Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries [J].
Gentili, V. ;
Panero, S. ;
Reale, P. ;
Scrosati, B. .
JOURNAL OF POWER SOURCES, 2007, 170 (01) :185-190
[15]   Poly(vinylidene fluoride)-polydiphenylamine composite electrospun membrane as high-performance polymer electrolyte for lithium batteries [J].
Gopalan, Anantha Iyengar ;
Lee, Kwang-Pill ;
Manesh, Kalayil Manian ;
Santhosh, Padmanabhan .
JOURNAL OF MEMBRANE SCIENCE, 2008, 318 (1-2) :422-428
[16]   Development of electrospun PVdF-PAN membrane-based polymer electrolytes for lithium batteries [J].
Gopalan, Anantha Iyenger ;
Santhosh, Padmanabhan ;
Manesh, Kalayil Manian ;
Nho, Jin Hee ;
Kim, Sang Ho ;
Hwang, Chul-Gyun ;
Lee, Kwang-Pill .
JOURNAL OF MEMBRANE SCIENCE, 2008, 325 (02) :683-690
[17]  
Gozdz A. S., 1994, P 186 S EL SOC M MIA, P117
[18]  
Gozdz A. S., 1995, US Patent, Patent No. [5,418,091, 5418091]
[19]   Composite polymer electrolytes of poly(ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer [J].
Itoh, T ;
Miyamura, Y ;
Ichikawa, Y ;
Uno, T ;
Kubo, M ;
Yamamoto, O .
JOURNAL OF POWER SOURCES, 2003, 119 :403-408
[20]   Effect of phase inversion on microporous structure development of Al2O3/poly(vinylidene fluoride-hexafluoropropylene)-based ceramic composite separators for lithium-ion batteries [J].
Jeong, Hyun-Seok ;
Kim, Dong-Won ;
Jeong, Yeon Uk ;
Lee, Sang-Young .
JOURNAL OF POWER SOURCES, 2010, 195 (18) :6116-6121