Physicochemical characteristics of poly(vinylidene fluoride-hexafluoropropylene)-alumina for mesocarbon microbeads versus LiNi1/3Mn1/3Co1/3O2 Li-ion polymer cells

被引:7
作者
Manikandan, P. [1 ]
Kousalya, S. [2 ]
Periasamy, P. [1 ]
机构
[1] CSIR, Cent Electrochem Res Inst, Electrochem Power Sources Div, Karaikkudi 630006, Tamil Nadu, India
[2] PSGR Krishnammal Coll Women, Coimbatore 641004, Tamil Nadu, India
关键词
Polymers; Ceramics; Infrared spectroscopy; Electrochemical properties; COMPOSITE POLYMER; ELECTROCHEMICAL PROPERTIES; LITHIUM; ELECTROLYTES; BATTERIES; PERFORMANCE; MEMBRANE;
D O I
10.1016/j.jpcs.2013.05.016
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Membranes based on the composite gel polymer electrolyte (CGPE) system have been prepared through the solution casting method using poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)), nanosized alumina ceramics (Al2O3) and 1 M LiCF3SO3 salt dissolved in the mixture of (1:1) ethylene carbonate, dimethyl carbonate (EC+DMC) solvents. Physicochemical characteristics viz., structural, electrochemical properties of these membranes have been analyzed. The optimum composition of 10 wt% Al2O3 with (P(VdF-HFP)) and 1 M LiCF3SO3 in EC+DMC showed a higher ionic conductivity of 7.1047 x 10(-3) S cm(-1), electrochemical stability of 4.9 V (CGPE-10, 30 degrees C) which can be attributed to honey-comb structure. This Li/CGPE-10/LiNi1/3Mn1/3Co1/3O2 cell delivered significant enhancement in charge-discharge studies viz., 186 mA h g(-1) (1st) and good capacity retention similar to 90% (50th) in the voltage range 2.5-4.6 V at 0.1 C rate. Also, corresponding Li-ion polymer cell (MCMB/CGPE-10/LiNi1/3Mn1/3Co1/3O2) yielded proportionate 2.38 mA h and the capacity retention similar to 95% at the 50th cycle. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1492 / 1498
页数:7
相关论文
共 40 条
[1]   Nanoparticle-dispersed PEO polymer electrolytes for Li batteries [J].
Ahn, JH ;
Wang, GX ;
Liu, HK ;
Dou, SX .
JOURNAL OF POWER SOURCES, 2003, 119 :422-426
[2]   Ionic conductivity, DSC and self diffusion coefficients of lithium, anion, polymer, and solvent of polymer gel electrolytes: the structure of the gels and the diffusion mechanism of the ions [J].
Aihara, Y ;
Arai, S ;
Hayamizu, K .
ELECTROCHIMICA ACTA, 2000, 45 (8-9) :1321-1326
[3]   Practical performances of Li-ion polymer batteries with LiNi0.8Co0.2O2, MCMB, and PAN-based gel electrolyte [J].
Akashi, H ;
Shibuya, M ;
Orui, K ;
Shibamoto, G ;
Sekai, K .
JOURNAL OF POWER SOURCES, 2002, 112 (02) :577-582
[4]   ROOM-TEMPERATURE RECHARGEABLE POLYMER ELECTROLYTE BATTERIES [J].
ALAMGIR, M ;
ABRAHAM, KM .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :40-45
[5]   KINETICS AND STABILITY OF THE LITHIUM ELECTRODE IN POLY(METHYLMETHACRYLATE)-BASED GEL ELECTROLYTES [J].
APPETECCHI, GB ;
CROCE, F ;
SCROSATI, B .
ELECTROCHIMICA ACTA, 1995, 40 (08) :991-997
[6]   A new class of advanced polymer electrolytes and their relevance in plastic-like, rechargeable lithium batteries [J].
Appetecchi, GB ;
Dautzenberg, G ;
Scrosati, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (01) :6-12
[7]   Functionalisation of PAA radiation grafted PVDF [J].
Betz, N ;
Begue, J ;
Goncalves, M ;
Gionnet, K ;
Déléris, G ;
Le Moël, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2003, 208 :434-441
[8]   ELECTROCHEMICAL PROPERTIES OF POLYETHYLENE OXIDE-LI[(CF3SO2)(2)N]-GAMMA-LIALO2 COMPOSITE POLYMER ELECTROLYTES [J].
BORGHINI, MC ;
MASTRAGOSTINO, M ;
PASSERINI, S ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (07) :2118-2121
[9]   Design of organic-inorganic solid polymer electrolytes: synthesis, structure, and properties [J].
Bronstein, LM ;
Karlinsey, RL ;
Ritter, K ;
Joo, CG ;
Stein, B ;
Zwanziger, JW .
JOURNAL OF MATERIALS CHEMISTRY, 2004, 14 (12) :1812-1820
[10]   COMPOSITE POLYMER ELECTROLYTES [J].
CAPUANO, F ;
CROCE, F ;
SCROSATI, B .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1991, 138 (07) :1918-1922