Noncommutative scalar quasinormal modes and quantization of entropy of a BTZ black hole

被引:33
作者
Gupta, Kumar S. [1 ]
Harikumar, E. [2 ]
Juric, Tajron [3 ]
Meljanac, Stjepan [3 ]
Samsarov, Andjelo [4 ,5 ]
机构
[1] Saha Inst Nucl Phys, Div Theory, Kolkata 700064, W Bengal, India
[2] Univ Hyderabad, Sch Phys, Hyderabad 500046, Andhra Pradesh, India
[3] Rudjer Boskovic Inst, HR-10002 Zagreb, Croatia
[4] Univ Cagliari, Dipartimento Matemat, I-09123 Cagliari, Italy
[5] Ist Nazl Fis Nucl, Sez Cagliari, I-09123 Cagliari, Italy
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2015年 / 09期
关键词
Non-Commutative Geometry; Models of Quantum Gravity; AdS-CFT Correspondence; Space-Time Symmetries; FIELD-THEORY; POINCARE; SPACETIME; FINITENESS;
D O I
10.1007/JHEP09(2015)025
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We obtain an exact analytic expression for the quasinormal modes of a noncommutative massless scalar field in the background of a massive spinless BTZ black hole up to the first order in the deformation parameter. We also show that the equations of motion governing these quasinormal modes are identical in form to the equations of motion of a commutative massive scalar field in the background of a fictitious massive spinning BTZ black hole. This results hints at a duality between the commutative and noncommutative systems in the background of a BTZ black hole. Using the obtained results for quasinormal mode frequencies, the area and entropy spectra for the BTZ black hole in the presence of noncommutativity are calculated. In particular, the separations between the neighboring values of these spectra are determined and it is found that they are nonuniform. Therefore, it appears that the noncommutativity leads to a non-equispaced (discrete) area and entropy spectra.
引用
收藏
页数:17
相关论文
共 51 条
  • [1] Large N field theories, string theory and gravity
    Aharony, O
    Gubser, SS
    Maldacena, J
    Ooguri, H
    Oz, Y
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 323 (3-4): : 183 - 386
  • [2] [Anonymous], 1981, ANN MATH STUDIES
  • [3] BLACK-HOLE IN 3-DIMENSIONAL SPACETIME
    BANADOS, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (13) : 1849 - 1851
  • [4] Geometry of the 2+1 black hole (vol 48, pg 1506, 1993)
    Banados, Maximo
    Henneaux, Marc
    Teitelboim, Claudio
    Zanelli, Jorge
    [J]. PHYSICAL REVIEW D, 2013, 88 (06):
  • [5] BLACK HOLES AND SECOND LAW
    BEKENSTEIN, JD
    [J]. LETTERE AL NUOVO CIMENTO, 1972, 4 (15): : 737 - +
  • [6] Quasinormal modes of black holes and black branes
    Berti, Emanuele
    Cardoso, Vitor
    Starinets, Andrei O.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (16)
  • [7] Relaxation in conformal field theory, Hawking-Page transition, and quasinormal or normal modes
    Birmingham, D
    Sachs, I
    Solodukhin, SN
    [J]. PHYSICAL REVIEW D, 2003, 67 (10):
  • [8] Geometrical finiteness, holography, and the Banados-Teitelboim-Zanelli black hole
    Birmingham, D
    Kennedy, C
    Sen, S
    Wilkins, A
    [J]. PHYSICAL REVIEW LETTERS, 1999, 82 (21) : 4164 - 4167
  • [9] Conformal field theory interpretation of black hole quasinormal modes
    Birmingham, D
    Sachs, I
    Solodukhin, SN
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (15) : 4
  • [10] Birmingham D, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.064024