Metric stability of trees and tight spans

被引:2
作者
Lang, Urs [1 ]
Pavon, Mael [1 ]
Zuest, Roger [2 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
[2] Univ Fribourg, Dept Math, CH-1700 Fribourg, Switzerland
基金
瑞士国家科学基金会;
关键词
Gromov-Hausdorff distance; Injective hull; Tight span; Metric tree; SPACES;
D O I
10.1007/s00013-013-0535-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove optimal extension results for roughly isometric relations between metric (-)trees and injective metric spaces. This yields sharp stability estimates, in terms of the Gromov-Hausdorff (GH) distance, for certain metric spanning constructions: the GH distance of two metric trees spanned by some subsets is smaller than or equal to the GH distance of these sets. The GH distance of the injective hulls, or tight spans, of two metric spaces is at most twice the GH distance between themselves.
引用
收藏
页码:91 / 100
页数:10
相关论文
共 31 条
  • [1] Metric stability of trees and tight spans
    Urs Lang
    Maël Pavón
    Roger Züst
    Archiv der Mathematik, 2013, 101 : 91 - 100
  • [2] Trees, tight-spans and point configurations
    Herrmann, Sven
    Moulton, Vincent
    DISCRETE MATHEMATICS, 2012, 312 (16) : 2506 - 2521
  • [3] Searching for realizations of finite metric spaces in tight spans
    Herrmann, Sven
    Moulton, Vincent
    Spillner, Andreas
    DISCRETE OPTIMIZATION, 2013, 10 (04) : 310 - 319
  • [4] Obtaining splits from cut sets of tight spans
    Dress, Andreas
    Moulton, Vincent
    Spinner, Andreas
    Wu, Taoyang
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (10-11) : 1409 - 1420
  • [5] Tight span of subsets of the plane with the maximum metric
    Kilic, Mehmet
    Kocak, Sahin
    ADVANCES IN MATHEMATICS, 2016, 301 : 693 - 710
  • [6] TIGHT SPANS, ISBELL COMPLETIONS AND SEMI-TROPICAL MODULES
    Willerton, Simon
    THEORY AND APPLICATIONS OF CATEGORIES, 2013, 28 : 696 - 732
  • [7] Metric trees in the Gromov-Hausdorff space
    Ishiki, Yoshito
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2023, 64 (01): : 73 - 82
  • [8] Trimming of metric spaces and the tight span
    Turaev, Vladimir
    DISCRETE MATHEMATICS, 2018, 341 (10) : 2925 - 2937
  • [9] Wasserstein distance and metric trees
    Mathey-Prevot, Maxime
    Valette, Alain
    ENSEIGNEMENT MATHEMATIQUE, 2023, 69 (3-4): : 315 - 333
  • [10] The tight span of an antipodal metric space - Part I: Combinatorial properties
    Huber, KT
    Koolen, JH
    Moulton, V
    DISCRETE MATHEMATICS, 2005, 303 (1-3) : 65 - 79