A goodness-of-fit test for regression models with spatially correlated errors

被引:5
作者
Meilan-Vila, Andrea [1 ]
Opsomer, Jean D. [2 ]
Francisco-Fernandez, Mario [1 ]
Crujeiras, Rosa M. [3 ]
机构
[1] Univ A Coruna, Fac Comp Sci, Dept Math, Res Grp MODES, Campus Elvina S-N, La Coruna 15071, Spain
[2] Westat Corp, 1600 Res Blvd, Rockville, MD 20850 USA
[3] Univ Santiago de Compostela, Fac Math, Dept Stat Math Anal & Optimizat, Res Grp MODESTYA, Rua Lope Gomez de Marzoa S-N, Santiago De Compostela 15782, Spain
关键词
Model checking; Spatial correlation; Local linear regression; Least squares; Bootstrap; NONPARAMETRIC REGRESSION; VARIOGRAM;
D O I
10.1007/s11749-019-00678-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The problem of assessing a parametric regression model in the presence of spatial correlation is addressed in this work. For that purpose, a goodness-of-fit test based on aL2-distance comparing a parametric and nonparametric regression estimators is proposed. Asymptotic properties of the test statistic, both under the null hypothesis and under local alternatives, are derived. Additionally, a bootstrap procedure is designed to calibrate the test in practice. Finite sample performance of the test is analyzed through a simulation study, and its applicability is illustrated using a real data example.
引用
收藏
页码:728 / 749
页数:22
相关论文
共 35 条
[1]   Goodness-of-fit test for linear models based on local polynomials [J].
Alcalá, JT ;
Cristóbal, JA ;
González-Manteiga, W .
STATISTICS & PROBABILITY LETTERS, 1999, 42 (01) :39-46
[2]  
AZZALINI A, 1989, BIOMETRIKA, V76, P1
[3]   Testing linearity of regression models with dependent errors by kernel based methods [J].
Biedermann, S ;
Dette, H .
TEST, 2000, 9 (02) :417-438
[4]  
Bowman A.W., 1997, APPL SMOOTHING TECHN, DOI DOI 10.1007/S001800000033
[5]   Inference for variograms [J].
Bowman, Adrian W. ;
Crujeiras, Rosa M. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 66 :19-31
[6]   FITTING VARIOGRAM MODELS BY WEIGHTED LEAST-SQUARES [J].
CRESSIE, N .
JOURNAL OF THE INTERNATIONAL ASSOCIATION FOR MATHEMATICAL GEOLOGY, 1985, 17 (05) :563-586
[7]  
Cressie N., 1993, Statistics for Spatial Data, DOI DOI 10.1002/9781119115151
[8]   Least squares estimation of nonlinear spatial trends [J].
Crujeiras, Rosa M. ;
Van Keilegom, Ingrid .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) :452-465
[9]   On the use of the variogram in checking for independence in spatial data [J].
Diblasi, A ;
Bowman, AW .
BIOMETRICS, 2001, 57 (01) :211-218
[10]   Model-based geostatistics [J].
Diggle, PJ ;
Tawn, JA ;
Moyeed, RA .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 1998, 47 :299-326