On a generalization of the expected discounted penalty function in a discrete-time insurance risk model

被引:18
作者
Landriault, David [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
关键词
risk theory; compound binomial model; general premium rate; expected discounted penalty function; polynomial matrix; generating functions;
D O I
10.1002/asmb.713
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we propose a generalization of the expected discounted penalty function and analyze the proposed analytic tool in the framework of the compound binomial model with a general premium rate c (c is an element of N+) received per period. We derive an explicit expression for this generalized analytic tool in terms of the zeros of a matrix determinant. We then examine the original expected discounted penalty function in the compound binomial model with a general premium rate c, generalizing the results of Cheng et al. (Insur Math. Econ. 2000; 26:239-250) in the framework of the compound binomial model with a unit premium rate. A numerical example is then considered to compare the original expected discounted penalty function with its generalized analytic tool. Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:525 / 539
页数:15
相关论文
共 20 条
[1]   On the discounted penalty function in a Markov-dependent risk model [J].
Albrecher, H ;
Boxma, OJ .
INSURANCE MATHEMATICS & ECONOMICS, 2005, 37 (03) :650-672
[2]   Discounted probabilities and ruin theory in the compound binomial model [J].
Cheng, SX ;
Gerber, HU ;
Shiu, ESW .
INSURANCE MATHEMATICS & ECONOMICS, 2000, 26 (2-3) :239-250
[3]  
COSSETTE H, 2003, SCANDINAVIAN ACTUARI, V5, P301
[4]   THE QUEUE GI/M/S WITH CUSTOMERS OF DIFFERENT TYPES OR THE QUEUE GI/HM/S [J].
DESMIT, JHA .
ADVANCES IN APPLIED PROBABILITY, 1983, 15 (02) :392-419
[5]  
DICKSON DCM, 1995, ASTIN BULL, V25, P153, DOI DOI 10.2143/AST.25.2.563245
[6]  
DSHALALOW JH, 1995, ADV QUEUEING THEORY
[7]  
ELLIOTT R. J., 2005, MATH FINANCIAL MARKE
[8]  
Gantmacher F. R., 1959, APPL THEORY MATRICES
[9]  
Gerber H. U., 1998, N AM ACTUARIAL J, V2, P48, DOI [DOI 10.1080/10920277.1998.10595671, 10.1080/10920277.1998.10595671]
[10]  
Gerber H.U., 1988, ASTIN Bull., V18, P161, DOI DOI 10.2143/AST.18.2.2014949