Norm-Optimal Iterative Learning Control With Intermediate Point Weighting: Theory, Algorithms, and Experimental Evaluation

被引:67
|
作者
Owens, David H. [1 ,2 ]
Freeman, Christopher T. [2 ]
Thanh Van Dinh [2 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
关键词
Iterative learning control (ILC); iterative methods; learning control systems; linear systems; motion control; non-minimum phase systems; optimization methods; test facilities; ILC; DESIGN;
D O I
10.1109/TCST.2012.2196281
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This brief considers the iterative learning control (ILC) problem when tracking is only required at a subset of isolated time points along the trial duration. It presents a norm-optimal ILC solution to the problem with well-defined convergence properties, design guidelines, and supporting experimental results using an electromechanical test facility.
引用
收藏
页码:999 / 1007
页数:9
相关论文
共 34 条
  • [1] Intermediate Point Norm Optimal Iterative Learning Control
    Owens, David H.
    Freeman, Chris T.
    Van Dinh, Thanh
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 3954 - 3959
  • [2] Norm-optimal iterative learning control applied to gantry robots for automation applications
    Ratcliffe, James D.
    Lewin, Paul L.
    Rogers, Eric
    Hatonen, Jari J.
    Owens, David H.
    IEEE TRANSACTIONS ON ROBOTICS, 2006, 22 (06) : 1303 - 1307
  • [3] Frequency-Domain Analysis of Robust Monotonic Convergence of Norm-Optimal Iterative Learning Control
    Ge, Xinyi
    Stein, Jeffrey L.
    Ersal, Tulga
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2018, 26 (02) : 637 - 651
  • [4] Optimality of Norm-Optimal Iterative Learning Control Among Linear Time Invariant Iterative Learning Control Laws in Terms of Balancing Robustness and Performance
    Ge, Xinyi
    Stein, Jeffrey L.
    Ersal, Tulga
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2019, 141 (04):
  • [5] Generalized norm optimal iterative learning control with intermediate point and sub-interval tracking
    Owens D.H.
    Freeman C.T.
    Chu B.
    Int. J. Autom. Comput., 3 (243-253): : 243 - 253
  • [6] A Data-Driven Constrained Norm-Optimal Iterative Learning Control Framework for LTI Systems
    Janssens, Pieter
    Pipeleers, Goele
    Swevers, Jan
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2013, 21 (02) : 546 - 551
  • [7] Computationally-Light Non-Lifted Data-Driven Norm-Optimal Iterative Learning Control
    Chi, Ronghu
    Hou, Zhongsheng
    Jin, Shangtai
    Huang, Biao
    ASIAN JOURNAL OF CONTROL, 2018, 20 (01) : 115 - 124
  • [8] OPTIMIZATION BASED WEIGHTING MATRICES DESIGN FOR NORM OPTIMAL ITERATIVE LEARNING CONTROL
    Ge, Xinyi
    Stein, Jeffrey L.
    Ersal, Tulga
    PROCEEDINGS OF THE ASME 9TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2016, VOL 2, 2017,
  • [9] DATA-BASED NORM-OPTIMAL ITERATIVE LEARNING CONTROL VIA GAUSSIAN PROCESS REGRESSION\ast
    Zhang, Jingyao
    Meng, Deyuan
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2025, 63 (01) : 431 - 451
  • [10] Data-driven Norm Optimal Iterative Learning Control for Point-to-Point Tasks
    Jiang, Zheng
    Chen, Bin
    Chu, Bing
    IFAC PAPERSONLINE, 2023, 56 (02): : 1051 - 1056