Design of a novel biohythane process with high H2 and CH4 production rates

被引:40
作者
Willquist, Karin [1 ]
Nkemka, Valentine Nkongendem [2 ]
Svensson, Helena [1 ]
Pawar, Sudhanshu
Ljunggren, Mattias [1 ]
Karlsson, Hans [1 ]
Murto, Marika [2 ]
Hulteberg, Christian [1 ]
van Niel, Ed W. I.
Liden, Gunnar [1 ]
机构
[1] Lund Univ, Dept Chem Engn, S-22100 Lund, Sweden
[2] Lund Univ, Dept Biotechnol, S-22100 Lund, Sweden
关键词
ADM1; Biohythane; Caldicellulosiruptor saccharolyticus; Biohydrogen; Gas upgrading; UASB; METHYLDIETHANOLAMINE PLUS PIPERAZINE; HYDROGEN-PRODUCTION; N-METHYLDIETHANOLAMINE; AQUEOUS-SOLUTIONS; SURFACE-TENSION; CALDICELLULOSIRUPTOR-SACCHAROLYTICUS; ANAEROBIC-DIGESTION; SOLID-WASTE; VISCOSITY; CO2;
D O I
10.1016/j.ijhydene.2012.08.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A biohythane process based on wheat straw including: i) pretreatment, ii) H-2 production using Caldicellulosiruptor saccharolyticus, iii) CH4 production using an undefined consortium, and iv) gas upgrading using an amine solution, was assessed through process modelling including cost and energy analysis. According to simulations, a biohythane gas with the composition 46-57% H-2, 43-54% CH4 and 0.4% CO2, could be produced at high production rates (2.8-6.1 L/L/d), with 93% chemical oxygen demand (COD) reduction, and a net energy yield of 7.4-7.7 kJ/g dry straw. The model was calibrated and verified using experimental data from dark fermentation (DF) of wheat straw hydrolysate, and anaerobic digestion of DF effluent. In addition, the effect of gas recirculation was investigated by both wet experiments and simulation. Sparging improved H-2 productivities and yields, but negatively affected the net energy gain and cost of the overall process. Copyright (c) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:17749 / 17762
页数:14
相关论文
共 58 条
  • [11] MDEA/Piperazine as a solvent for CO2 capture
    Closmann, Fred
    Nguyen, Thu
    Rochelle, Gary T.
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 1351 - 1357
  • [12] Glycolytic pathway and hydrogen yield studies of the extreme thermophile Caldicellulosiruptor saccharolyticus
    de Vrije, T.
    Mars, A. E.
    Budde, M. A. W.
    Lai, M. H.
    Dijkema, C.
    de Waard, P.
    Claassen, P. A. M.
    [J]. APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2007, 74 (06) : 1358 - 1367
  • [13] Hydrogen production from carrot pulp by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana
    de Vrije, Truus
    Budde, Miriam A. W.
    Lips, Steef J.
    Bakker, Robert R.
    Mars, Astrid E.
    Claassen, Pieternel A. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (24) : 13206 - 13213
  • [14] Solubility of N2O in and density, viscosity, and surface tension of aqueous piperazine solutions
    Derks, PW
    Hogendoorn, KJ
    Versteeg, GF
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2005, 50 (06) : 1947 - 1950
  • [15] Derks PW, 2006, CARBON DIOXIDE ABSOR
  • [16] Green D., 2007, PERRYS CHEM ENG HDB
  • [17] Advances in fermentative biohydrogen production: the way forward?
    Hallenbeck, Patrick C.
    Ghosh, Dipankar
    [J]. TRENDS IN BIOTECHNOLOGY, 2009, 27 (05) : 287 - 297
  • [18] Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies
    Ivanova, Galina
    Rakhely, Gabor
    Kovacs, Kornel L.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (09) : 3659 - 3670
  • [19] Kabadi VN, 2006, HEAT DISSOLUTION MEA
  • [20] Solubility of CO2 in (H2O+piperazine) and in (H2O+MDEA+piperazine)
    Kamps, APS
    Xia, JZ
    Maurer, G
    [J]. AICHE JOURNAL, 2003, 49 (10) : 2662 - 2670