Feedback in state constrained optimal control

被引:25
作者
Clarke, FH
Rifford, L
Stern, RJ
机构
[1] Univ Lyon 1, Inst Desargues, F-69622 Villeurbanne, France
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
关键词
optimal control; state constraint; near-optimal control feedback; nonsmooth analysis;
D O I
10.1051/cocv:2002005
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An optimal control problem is studied, in which the state is required to remain in a compact set S. A control feedback law is constructed which, for given epsilon > 0, produces epsilon-optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in S. The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of S and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.
引用
收藏
页码:97 / 133
页数:37
相关论文
共 44 条
[1]  
Ancona F., 1999, ESAIM. Control, Optimisation and Calculus of Variations, V4, P445, DOI 10.1051/cocv:1999117
[2]  
[Anonymous], MAT SB
[3]  
[Anonymous], OPTIMAL CONTROL
[4]  
[Anonymous], GEN SOLUTIONS FIRST
[5]  
[Anonymous], 1998, DETERMINISTIC FINITE
[6]  
[Anonymous], 1997, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations
[7]  
[Anonymous], GRAD TEXTS MATH
[8]  
Barabanova N. N., 1971, Prikladnaya Matematika i Mekhanika, V35, P385
[9]  
Barabanova N. N., 1970, Prikladnaya Matematika i Mekhanika, V34, P796
[10]   OPTIMAL FEEDBACK CONTROLS [J].
BERKOVITZ, LD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (05) :991-1006