共 110 条
The oxygen reduction reaction in solid oxide fuel cells: from kinetic parameters measurements to electrode design
被引:35
作者:
Ascolani-Yael, Julian
[1
]
Montenegro-Hernandez, Alejandra
[1
]
Garces, Diana
[2
]
Liu, Quinyuan
[3
]
Wang, Hongqian
[3
]
Yakal-Kremski, Kyle
[3
]
Barnett, Scott
[3
]
Mogni, Liliana
[1
]
机构:
[1] Consejo Nacl Invest Cient & Tecn, CNEA, INN, Ctr Atom Bariloche, Ave Bustillo 9500, RA-8400 San Carlos De Bariloche, Rio Negro, Argentina
[2] CNEA, INN, Ctr Atom Constituyentes, B1650KNA, San Martin, Argentina
[3] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
来源:
JOURNAL OF PHYSICS-ENERGY
|
2020年
/
2卷
/
04期
基金:
美国国家科学基金会;
关键词:
solid oxide fuel cell;
cathode;
O-ion diffusion coefficient;
surface exchange;
GDBACO2O5+X LAYERED PEROVSKITE;
ION-BEAM TOMOGRAPHY;
IT-SOFC CATHODES;
SURFACE EXCHANGE;
ELECTROCHEMICAL PERFORMANCE;
BARIUM CARBONATE;
3-DIMENSIONAL RECONSTRUCTION;
TRANSPORT-PROPERTIES;
LANTHANUM-FERRITE;
3D RECONSTRUCTION;
D O I:
10.1088/2515-7655/abb4ec
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The research and development of new Solid Oxide Fuel Cell cathode materials is an area of intense activity. The kinetic coefficients describing the O-2-reduction mechanism are the O-ion diffusion (D-chem) and the O-surface exchange coefficients (k(chem)). These parameters are strongly dependent on the nature of the material, both on its bulk and surface atomic and electronic structures. This review discusses the method for obtaining the kinetic coefficients through the combination of electrochemical impedance spectroscopy with focused ion-beam 3D tomography measurements on porous electrodes (3DT-EIS). The data, together with oxygen non-stoichiometry thermodynamic data, is analysed using the Adler-Lane-Steele model for macro-homogeneous porous electrodes. The results for different families of oxides are compared: single- and double-layered perovskites with O-vacancies defects, based on La-Sr cobalt ferrites (La0.6Sr0.4Co1-xFexO3-delta,x= 0.2 and 0.8) and La/Pr-Ba cobaltites (La0.5-xPrxBa0.5CoO3-delta,x= 0.0, 0.2 and 0.5), as well as Ruddlesden-Popper nickelates (Nd2NiO4 +delta) with O-interstitial defects. The analysis of the evolution of molar surface exchange rates with oxygen partial pressure provides information about the mechanisms limiting the O-2-surface reaction, which generally isdissociative adsorptionordissociation-limited. At 700 degrees C in air, the La-Ba cobaltite structures, La0.5-xPrxBa0.5CoO3-delta, feature the most active surfaces (k(chem)0.5-1 10(-2)cm.s(-1)), followed by the nickelate Nd(2)NiO(4 +delta)and the La-Sr cobalt ferrites, withk(chem)1-5 10(-5)cm.s(-1). The diffusion coefficientsD(chem)are higher for cubic perovskites than for the layered ones. For La(0.6)Sr(0.4)Co(0.8)Fe(0.2)O(3-delta)and La0.6Sr0.4Co0.2Fe0.8O3-delta,D(chem)is 2.6 10(-6)cm(2).s(-1)and 5.4 10(-7)cm(2).s(-1), respectively. These values are comparable toD(chem)= 1.2 10(-6)cm(2).s(-1), observed for La0.5Ba0.5CoO3-delta. The layered structure drastically reduces the O-ion bulk diffusion, e.g.D-chem= 1.3 10(-8)cm(2).s(-1)for the Pr(0.5)Ba(0.5)CoO(3-delta)double perovskite andD(chem)2 10(-7)cm(2).s(-1)for Nd2NiO4 +delta. Finally, the analysis of the time evolution of the electrodes shows that the surface cation segregation affects both the O-ion bulk diffusion and the surface exchange rates.
引用
收藏
页数:28
相关论文