AgSbS2 modified ZnO nanotube arrays for photoelectrochemical water splitting

被引:83
作者
Han, Jianhua [1 ]
Liu, Zhifeng [1 ]
Guo, Keying [1 ]
Zhang, Xueqi [1 ]
Hong, Tiantian [1 ]
Wang, Bo [1 ]
机构
[1] Tianjin Chengjian Univ, Sch Mat Sci & Engn, Tianjin 300384, Peoples R China
关键词
AgSbS2; ZnO; Nanotube; Photoelectrochemical; Water splitting; SENSITIZED SOLAR-CELLS; HYDROGEN EVOLUTION; NANOWIRE ARRAYS; CONVERSION-EFFICIENCY; CDS; NANOSTRUCTURES; NANOPARTICLES; NANOCRYSTALS; ENHANCEMENT; PERFORMANCE;
D O I
10.1016/j.apcatb.2015.05.008
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large-scale, vertically aligned AgSbS2 modified ZnO nanotube arrays have been fabricated directly on conducting glass substrates (ITO) via a facile, versatile and low-cost hydrothermal chemical process by using ZnO nanorods as reactive templates. This method is easy to be controlled to develop uniform morphology, and it can be generalized to fabricate other ternary sensitizer nanomaterial for PEC water splitting. In this work, we present a novel ternary sensitizer miargyrite AgSbS2 for optimized ZnO, and the ZnO/AgSbS2 nanoarrays film was applied on photoelectrochemical (PEC) photoelectrodes. Strikingly, the photocurrent density of this electrode was up to 5.08 mA cm(-2) at 0.096 V versus Ag/AgCl. The excellent PEC properties stems from the enhanced absorption spectrum, high speed of photo-induced charges transmission velocity and appropriate energy gap of coupled nanostructures. Furthermore, this work demonstrates a promising low-cost method for preparing ternary sensitizer modified ZnO nanoarrays as PEC electodes for hydrogen production by water splitting. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:61 / 68
页数:8
相关论文
共 34 条
[1]   Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible [J].
Bao, Ningzhong ;
Shen, Liming ;
Takata, Tsuyoshi ;
Domen, Kazunari .
CHEMISTRY OF MATERIALS, 2008, 20 (01) :110-117
[2]  
Capistran M. J., 2012, MRS P, V1447
[3]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[4]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[5]   High Quantum Efficiency of Band-Edge Emission from ZnO Nanowires [J].
Gargas, Daniel J. ;
Gao, Hanwei ;
Wang, Hungta ;
Yang, Peidong .
NANO LETTERS, 2011, 11 (09) :3792-3796
[6]   Trilaminar ZnO/ZnS/Sb2S3 nanotube arrays for efficient inorganic-organic hybrid solar cells [J].
Han, Jianhua ;
Liu, Zhifeng ;
Zheng, Xuerong ;
Guo, Keying ;
Zhang, Xueqi ;
Hong, Tiantian ;
Wang, Bo ;
Liu, Junqi .
RSC ADVANCES, 2014, 4 (45) :23807-23814
[7]   AgSbS2 semiconductor-sensitized solar cells [J].
Ho, Yi-Rong ;
Lee, Ming-Way .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 26 :48-51
[8]   Modulation of Photocarrier Dynamics in Indoline Dye-Modified TiO2 Nanorod Array/P3HT Hybrid Solar Cell with 4-tert-Butylpridine [J].
Hsu, Shu-Chien ;
Liao, Wen-Pin ;
Lin, Wan-Hsien ;
Wu, Jih-Jen .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (49) :25721-25726
[9]   Hydrogen Evolution from Pt Nanoparticles Covered p-Type CdS:Cu Photocathode in Scavenger-Free Electrolyte [J].
Huang, Qiang ;
Li, Quan ;
Xiao, Xudong .
JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (05) :2306-2311
[10]   Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core-Shell Nanorods [J].
Khanchandani, Sunita ;
Kundu, Simanta ;
Patra, Amitava ;
Ganguli, Ashok K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (44) :23653-23662