ReAct: Out-of-distribution Detection With Rectified Activations

被引:0
|
作者
Sun, Yiyou [1 ]
Guo, Chuan [2 ]
Li, Yixuan [1 ]
机构
[1] Univ Wisconsin, Dept Comp Sci, 1210 W Dayton St, Madison, WI 53706 USA
[2] Facebook AI Res, New York, NY USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) | 2021年 / 34卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Out-of-distribution (OOD) detection has received much attention lately due to its practical importance in enhancing the safe deployment of neural networks. One of the primary challenges is that models often produce highly confident predictions on OOD data, which undermines the driving principle in OOD detection that the model should only be confident about in-distribution samples. In this work, we propose ReAct-a simple and effective technique for reducing model overconfidence on OOD data. Our method is motivated by novel analysis on internal activations of neural networks, which displays highly distinctive signature patterns for OOD distributions. Our method can generalize effectively to different network architectures and different OOD detection scores. We empirically demonstrate that ReAct achieves competitive detection performance on a comprehensive suite of benchmark datasets, and give theoretical explication for our method's efficacy. On the ImageNet benchmark, ReAct reduces the false positive rate (FPR95) by 25.05% compared to the previous best method(1).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] VRA: Variational Rectified Activation for Out-of-distribution Detection
    Xu, Mingyu
    Lian, Zheng
    Liu, Bin
    Tao, Jianhua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] LHAct: Rectifying Extremely Low and High Activations for Out-of-Distribution Detection
    Yuan, Yue
    He, Rundong
    Han, Zhongyi
    Yin, Yilong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 8105 - 8113
  • [3] Out-of-distribution Detection Learning with Unreliable Out-of-distribution Sources
    Zheng, Haotian
    Wang, Qizhou
    Fang, Zhen
    Xia, Xiaobo
    Liu, Feng
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [4] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    Journal of Machine Learning Research, 2024, 25
  • [5] Entropic Out-of-Distribution Detection
    Macedo, David
    Ren, Tsang Ing
    Zanchettin, Cleber
    Oliveira, Adriano L., I
    Ludermir, Teresa
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [6] Watermarking for Out-of-distribution Detection
    Wang, Qizhou
    Liu, Feng
    Zhang, Yonggang
    Zhang, Jing
    Gong, Chen
    Liu, Tongliang
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [7] Is Out-of-Distribution Detection Learnable?
    Fang, Zhen
    Li, Yixuan
    Lu, Jie
    Dong, Jiahua
    Han, Bo
    Liu, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [8] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [9] Out-of-Distribution Detection for Automotive Perception
    Nitsch, Julia
    Itkina, Masha
    Senanayake, Ransalu
    Nieto, Juan
    Schmidt, Max
    Siegwart, Roland
    Kochenderfer, Mykel J.
    Cadena, Cesar
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 2938 - 2943
  • [10] Decoupling MaxLogit for Out-of-Distribution Detection
    Zhang, Zihan
    Xiang, Xiang
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3388 - 3397