Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature

被引:123
作者
Chen, Hedong [1 ]
Hou, Xianhua [1 ]
Chen, Fuming [1 ]
Wang, Shaofeng [1 ]
Wu, Bo [2 ]
Ru, Qiang [1 ]
Qin, Haiqing [3 ]
Xia, Yingchun [4 ]
机构
[1] South China Normal Univ, Guangdong Prov Key Lab Quantum Engn & Quantum Mat, Sch Phys & Telecommun Engn, Guangdong Engn Technol Res Ctr Efficient Green En, Guangzhou 510006, Guangdong, Peoples R China
[2] Fuzhou Univ, Coll Mat Sci & Engn, Multiscale Computat Mat Facil, Key Lab Ecomat Adv Technol, Fuzhou 350100, Fujian, Peoples R China
[3] China Nonferrous Met Guilin Geol & Min Co Ltd, Guangxi Key Lab Superhard Mat, Guilin 541004, Peoples R China
[4] Beijing Jwgb Sci & Tech Co Ltd, Beijing 100055, Peoples R China
基金
中国国家自然科学基金;
关键词
Void sandwich structure; Spray drying; Lithium ion battery; Anode; High temperature; SI NANOPARTICLES; GRAPHENE OXIDE; POROUS SILICON; ELECTRODES; SHELL; NANOCOMPOSITES; FABRICATION; NANOSHEETS; NANOFIBER; BINDERS;
D O I
10.1016/j.carbon.2018.01.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To reduce the influence from volume expansion of silicon during lithium lithiation/delithiation, milled flake graphite/plasma nano-silicon@carbon (MFG/PNSi@C) composite with void sandwich structure is synthesized by assembling thin MFG (thickness of 150 nm) sheets loading with carbon-coated PNSi (plasma nano-silicon) via a facile spray drying method. The MFG/PNSi@C composite, as lithium ion battery anode, exhibits excellent electrochemical performance at room temperature and displays an outstanding cyclic property even at high temperature. The MFG/PNSi@C electrode delivers reversible capacity of 1141 mAh g(-1), and high initial Coulombic efficiency of 84.4%, and capacity retention of 84.1% after 200 cycles at a current density of 0.1 A g(-1). Even at the current density of 0.2 and 0.4 A g(-1), the reversible capacities of 1168 and 1102 mAh g(-1) can be achieved respectively, with the capacity retention of 68.9% and 63.9% after 200 cycles. Even the work temperature goes up 60 degrees C, the discharge/charge capacities of 832/808 mAh g(-1) can be obtained at a current density of 0.1 A g(-1). The stable cyclic performance is mainly due to the void sandwich structure of the MFG/PNSi@C composite, which dramatically shortens lithium ion diffusion path and pitch carbon shell can buffer huge volume expansion. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:433 / 440
页数:8
相关论文
共 45 条
[1]   Synthesis of binder-like molecules covalently linked to silicon nanoparticles and application as anode material for lithium-ion batteries without the use of electrolyte additives [J].
Assresahegn, Birhanu Desalegn ;
Belanger, Daniel .
JOURNAL OF POWER SOURCES, 2017, 345 :190-201
[2]   Graphene wrapped silicon nanocomposites for enhanced electrochemical performance in lithium ion batteries [J].
Chabot, Victor ;
Feng, Kun ;
Park, Hey Woong ;
Hassan, Fathy M. ;
Elsayed, Abdel Rahman ;
Yu, Aiping ;
Xiao, Xingcheng ;
Chen, Zhongwei .
ELECTROCHIMICA ACTA, 2014, 130 :127-134
[3]   Mass-producible method for preparation of a carbon-coated graphite@plasma nano-silicon@carbon composite with enhanced performance as lithium ion battery anode [J].
Chen, Hedong ;
Wang, Zhoulu ;
Hou, Xianhua ;
Fu, Lijun ;
Wang, Shaofeng ;
Hu, Xiaoqiao ;
Qin, Haiqing ;
Wu, Yuping ;
Ru, Qiang ;
Liu, Xiang ;
Hu, Shejun .
ELECTROCHIMICA ACTA, 2017, 249 :113-121
[4]   Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes [J].
Chen, Xilin ;
Li, Xiaolin ;
Ding, Fei ;
Xu, Wu ;
Xiao, Jie ;
Cao, Yuliang ;
Meduri, Praveen ;
Liu, Jun ;
Graff, Gordon L. ;
Zhang, Ji-Guang .
NANO LETTERS, 2012, 12 (08) :4124-4130
[5]   Hollow core-shell structured silicon@carbon nanoparticles embed in carbon nanofibers as binder-free anodes for lithium-ion batteries [J].
Chen, Yanli ;
Hu, Yi ;
Shen, Zhen ;
Chen, Renzhong ;
He, Xia ;
Zhang, Xiangwu ;
Li, Yongqiang ;
Wu, Keshi .
JOURNAL OF POWER SOURCES, 2017, 342 :467-475
[6]   Facile Synthesis of Porous Silicon Nanofibers by Magnesium Reduction for Application in Lithium Ion Batteries [J].
Cho, Daehwan ;
Kim, Moonkyoung ;
Hwang, Jeonghyun ;
Park, Jay Hoon ;
Joo, Yong Lak ;
Jeong, Youngjin .
NANOSCALE RESEARCH LETTERS, 2015, 10
[7]   Facile fabrication of patterned Si film electrodes containing trench-structured Cu current collectors for thin-film batteries [J].
Cho, Gyu-bong ;
Kim, Jae-kwang ;
Lee, Sang-hoon ;
Kim, Guk-tae ;
Noh, Jung-pil ;
Cho, Kwon-koo ;
Kim, Ki-won ;
Nam, Tae-hyun ;
Ahn, Hyo-jun .
ELECTROCHIMICA ACTA, 2017, 224 :649-659
[8]   Highly mesoporous silicon derived from waste iron slag for high performance lithium ion battery anodes [J].
Chun, Jinyoung ;
An, Sunhyung ;
Lee, Jinwoo .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (43) :21899-21906
[9]   Graphene Oxide Involved Air-Controlled Electrospray for Uniform, Fast, Instantly Dry, and Binder-Free Electrode Fabrication [J].
Fei, Ling ;
Yoo, Sang Ha ;
Villamayor, Rachel Ann R. ;
Williams, Brian P. ;
Gong, Seon Young ;
Park, Sunchan ;
Shin, Kyusoon ;
Joo, Yong Lak .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) :9738-9746
[10]   Porous silicon from the magnesiothermic reaction as a high-performance anode material for lithium ion battery applications [J].
Gao, Peibo ;
Tang, Huang ;
Xing, An ;
Bao, Zhihao .
ELECTROCHIMICA ACTA, 2017, 228 :545-552