Syntheses of Hematite (α-Fe2O3) Nanoparticles Using Microwave-Assisted Calcination Method

被引:13
作者
Nurhayati, Tati [1 ]
Iskandar, Ferry [1 ]
Abdullah, Mikrajuddin [1 ]
Khairurrijal [1 ]
机构
[1] Inst Teknol Bandung, Phys Elect Mat Res Div, Fac Math & Nat Sci, Bandung 40132, Indonesia
来源
NANOTECHNOLOGY APPLICATIONS IN ENERGY AND ENVIRONMENT | 2013年 / 737卷
关键词
calcination; hematite; microwave heating; simple heating; HYDROTHERMAL SYNTHESIS; CRYSTAL-GROWTH; NANORODS; MAGNETITE;
D O I
10.4028/www.scientific.net/MSF.737.197
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Hematite (alpha-Fe2O3) nanoparticles were synthesized from the solution of FeCl3 center dot 6H(2)O and NaOH in water using microwave-assisted calcination method. The syntheses were initially carried out by microwave heating and completed by a calcination process using a simple heating method. The effects of microwave heating time, calcination temperature, and calcination time were investigated. The XRD patterns demonstrated that the obtained nanoparticles are pure hematite. Using the Scherrer method, the average crystallite sizes of hematite nanoparticles were in the range of 35.6 to 54.4 nm. The obtained hematite nanoparticles were spherical with the average particle sizes ranging from 91 to 116 nm as confirmed by the SEM images.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 16 条
  • [1] Cao X., 1997, J MAT RES, V12
  • [2] Microwave-enhanced reaction rates for nanoparticle synthesis
    Gerbec, JA
    Magana, D
    Washington, A
    Strouse, GF
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (45) : 15791 - 15800
  • [3] Special phase transformation and crystal growth pathways observed in nanoparticles
    Gilbert, B
    Zhang, HZ
    Huang, F
    Finnegan, MP
    Waychunas, GA
    Banfield, JF
    [J]. GEOCHEMICAL TRANSACTIONS, 2003, 4 (1) : 20 - 27
  • [4] Microwave-assisted one-step hydrothermal synthesis of pure iron oxide nanoparticles: magnetite, maghemite and hematite
    Hu, Ling
    Percheron, Aurelien
    Chaumont, Denis
    Brachais, Claire-Helene
    [J]. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2011, 60 (02) : 198 - 205
  • [5] Morphological evolution of hematite nanoparticles with and without surfactant by hydrothermal method
    Jing, ZH
    Han, DZ
    Wu, SH
    [J]. MATERIALS LETTERS, 2005, 59 (07) : 804 - 807
  • [6] Hematite (α-Fe2O3) with Various Morphologies: Ionic Liquid-Assisted Synthesis, Formation Mechanism, and Properties
    Lian, Jiabiao
    Duan, Xiaochuan
    Ma, Jianmin
    Peng, Peng
    Kim, Tongil
    Zheng, Wenjun
    [J]. ACS NANO, 2009, 3 (11) : 3749 - 3761
  • [7] Synthesis of magnetite nanorods and porous hematite nanrods
    Lian, SY
    Wang, E
    Kang, ZH
    Bai, YP
    Gao, L
    Jiang, M
    Hu, CW
    Xu, L
    [J]. SOLID STATE COMMUNICATIONS, 2004, 129 (08) : 485 - 490
  • [8] Removal of Trace Arsenic To Meet Drinking Water Standards Using Iron Oxide Coated Multiwall Carbon Nanotubes
    Ntim, Susana Addo
    Mitra, Somenath
    [J]. JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2011, 56 (05) : 2077 - 2083
  • [9] Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: Insights from titania
    Penn, RL
    Banfield, JF
    [J]. GEOCHIMICA ET COSMOCHIMICA ACTA, 1999, 63 (10) : 1549 - 1557
  • [10] Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes
    Pu, ZF
    Cao, MH
    Jing, Y
    Huang, KL
    Hu, CW
    [J]. NANOTECHNOLOGY, 2006, 17 (03) : 799 - 804