Size-Dependent Nucleation in Crystal Phase Transition from Machine Learning Metadynamics

被引:14
作者
Santos-Florez, Pedro A. [1 ]
Yanxon, Howard [2 ]
Kang, Byungkyun [1 ]
Yao, Yansun [3 ]
Zhu, Qiang [1 ]
机构
[1] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[2] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[3] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MOLECULAR-DYNAMICS; DIAMOND; MODEL;
D O I
10.1103/PhysRevLett.129.185701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we present a framework that combines machine learning potential (MLP) and metadynamics to investigate solid-solid phase transition. Based on the spectral descriptors and neural networks regression, we develop a scalable MLP model to warrant an accurate interpolation of the energy surface where two phases coexist. Applying it to the simulation of B4-B1 phase transition of GaN under 50 GPa with different model sizes, we observe sequential change of the phase transition mechanism from collective modes to nucleation and growths. When the size is at or below 128 000 atoms, the nucleation and growth appear to follow a preferred direction. At larger sizes, the nuclei occur at multiple sites simultaneously and grow to microstructures by passing the critical size. The observed change of the atomistic mechanism manifests the importance of statistical sampling with large system size in phase transition modeling.
引用
收藏
页数:6
相关论文
共 46 条
  • [11] Origins of structural and electronic transitions in disordered silicon
    Deringer, Volker L.
    Bernstein, Noam
    Csanyi, Gabor
    Ben Mahmoud, Chiheb
    Ceriotti, Michele
    Wilson, Mark
    Drabold, David A.
    Elliott, Stephen R.
    [J]. NATURE, 2021, 589 (7840) : 59 - +
  • [12] Gleason A. E., 2015, NATURE COMMUNICATION, V6, P1
  • [13] Nanotwinned diamond with unprecedented hardness and stability
    Huang, Quan
    Yu, Dongli
    Xu, Bo
    Hu, Wentao
    Ma, Yanming
    Wang, Yanbin
    Zhao, Zhisheng
    Wen, Bin
    He, Julong
    Liu, Zhongyuan
    Tian, Yongjun
    [J]. NATURE, 2014, 510 (7504) : 250 - +
  • [14] Phase Transitions of Hybrid Perovskites Simulated by Machine-Learning Force Fields Trained on the Fly with Bayesian Inference
    Jinnouchi, Ryosuke
    Lahnsteiner, Jonathan
    Karsai, Ferenc
    Kresse, Georg
    Bokdam, Menno
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (22)
  • [15] Khaliullin RZ, 2011, NAT MATER, V10, P693, DOI [10.1038/NMAT3078, 10.1038/nmat3078]
  • [16] Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
    Kresse, G
    Furthmuller, J
    [J]. PHYSICAL REVIEW B, 1996, 54 (16): : 11169 - 11186
  • [17] Escaping free-energy minima
    Laio, A
    Parrinello, M
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (20) : 12562 - 12566
  • [18] Homogeneous strain deformation path for the wurtzite to rocksalt high-pressure phase transition in GaN
    Limpijumnong, S
    Lambrecht, WRL
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (01) : 91 - 94
  • [19] Predicting crystal structures:: The Parrinello-Rahman method revisited -: art. no. 075503
    Martonák, R
    Laio, A
    Parrinello, M
    [J]. PHYSICAL REVIEW LETTERS, 2003, 90 (07) : 4
  • [20] Marx D., 2009, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods