Size-Dependent Nucleation in Crystal Phase Transition from Machine Learning Metadynamics

被引:14
作者
Santos-Florez, Pedro A. [1 ]
Yanxon, Howard [2 ]
Kang, Byungkyun [1 ]
Yao, Yansun [3 ]
Zhu, Qiang [1 ]
机构
[1] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[2] Argonne Natl Lab, Xray Sci Div, Lemont, IL 60439 USA
[3] Univ Saskatchewan, Dept Phys & Engn Phys, Saskatoon, SK S7N 5E2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
MOLECULAR-DYNAMICS; DIAMOND; MODEL;
D O I
10.1103/PhysRevLett.129.185701
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, we present a framework that combines machine learning potential (MLP) and metadynamics to investigate solid-solid phase transition. Based on the spectral descriptors and neural networks regression, we develop a scalable MLP model to warrant an accurate interpolation of the energy surface where two phases coexist. Applying it to the simulation of B4-B1 phase transition of GaN under 50 GPa with different model sizes, we observe sequential change of the phase transition mechanism from collective modes to nucleation and growths. When the size is at or below 128 000 atoms, the nucleation and growth appear to follow a preferred direction. At larger sizes, the nuclei occur at multiple sites simultaneously and grow to microstructures by passing the critical size. The observed change of the atomistic mechanism manifests the importance of statistical sampling with large system size in phase transition modeling.
引用
收藏
页数:6
相关论文
共 46 条
  • [1] [Anonymous], 2012, PHYS REV B, DOI [10.1103/PhysRevPhysEducRes.18.020116, DOI 10.1103/PHYSREVB.86.075308]
  • [2] Nucleating a Different Coordination in a Crystal under Pressure: A Study of the B1-B2 Transition in NaCl by Metadynamics
    Badin, Matej
    Martonak, Roman
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (10)
  • [3] On representing chemical environments
    Bartok, Albert P.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW B, 2013, 87 (18)
  • [4] Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
    Bartok, Albert P.
    Payne, Mike C.
    Kondor, Risi
    Csanyi, Gabor
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (13)
  • [5] Generalized neural-network representation of high-dimensional potential-energy surfaces
    Behler, Joerg
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (14)
  • [6] Constructing high-dimensional neural network potentials: A tutorial review
    Behler, Joerg
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2015, 115 (16) : 1032 - 1050
  • [7] Metadynamics simulations of the high-pressure phases of silicon employing a high-dimensional neural network potential
    Behler, Joerg
    Martonak, Roman
    Donadio, Davide
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (18)
  • [8] Silicon Liquid Structure and Crystal Nucleation from Ab Initio Deep Metadynamics
    Bonati, Luigi
    Parrinello, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (26)
  • [9] Phase behaviours of superionic water at planetary conditions
    Cheng, Bingqing
    Bethkenhagen, Mandy
    Pickard, Chris J.
    Hamel, Sebastien
    [J]. NATURE PHYSICS, 2021, 17 (11) : 1228 - +
  • [10] Evidence for supercritical behaviour of high-pressure liquid hydrogen
    Cheng, Bingqing
    Mazzola, Guglielmo
    Pickard, Chris J.
    Ceriotti, Michele
    [J]. NATURE, 2020, 585 (7824) : 217 - +