On the characterization of minimal value set polynomials

被引:10
作者
Borges, Herivelto [1 ]
Conceicao, Ricardo [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat & Comp, BR-13560970 Sao Carlos, SP, Brazil
[2] Emory Univ, Oxford Coll, Oxford, GA 30054 USA
基金
巴西圣保罗研究基金会;
关键词
Polynomials; Value set; Finite field;
D O I
10.1016/j.jnt.2012.08.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an explicit characterization of all minimal value set polynomials in F-q[x] whose set of values is a subfield F-q', of F-q. We show that the set of such polynomials, together with the constants of F-q', is an F-q'-vector space of dimension 2([Fq:Fq']). Our approach not only provides the exact number of such polynomials, but also yields a construction of new examples of minimal value set polynomials for some other fixed value sets. In the latter case, we also derive a non-trivial lower bound for the number of such polynomials. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:2021 / 2035
页数:15
相关论文
共 5 条
[1]  
[Anonymous], 1997, ENCY MATH APPL
[2]  
Carlitz L., 1961, Mathematika, V8, P121
[3]   Some maximal function fields and additive polynomials [J].
Garcia, Arnaldo ;
Ozbudak, Ferruh .
COMMUNICATIONS IN ALGEBRA, 2007, 35 (05) :1553-1566
[4]   Sziklai's conjecture on the number of points of a plane curve over a finite field III [J].
Homma, Masaaki ;
Kim, Seon Jeong .
FINITE FIELDS AND THEIR APPLICATIONS, 2010, 16 (05) :315-319
[5]   POLYNOMIALS WITH MINIMAL VALUE SETS [J].
MILLS, WH .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (01) :225-&