Detecting Melanoma Fairly: Skin Tone Detection and Debiasing for Skin Lesion Classification

被引:9
作者
Bevan, Peter J. [1 ]
Atapour-Abarghouei, Amir [2 ]
机构
[1] Newcastle Univ, Sch Comp, Newcastle Upon Tyne, England
[2] Univ Durham, Dept Comp Sci, Durham, England
来源
DOMAIN ADAPTATION AND REPRESENTATION TRANSFER (DART 2022) | 2022年 / 13542卷
关键词
DERMATOLOGISTS;
D O I
10.1007/978-3-031-16852-9_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional Neural Networks have demonstrated human-level performance in the classification of melanoma and other skin lesions, but evident performance disparities between differing skin tones should be addressed before widespread deployment. In this work, we propose an efficient yet effective algorithm for automatically labelling the skin tone of lesion images, and use this to annotate the benchmark ISIC dataset. We subsequently use these automated labels as the target for two leading bias 'unlearning' techniques towards mitigating skin tone bias. Our experimental results provide evidence that our skin tone detection algorithm outperforms existing solutions and that 'unlearning' skin tone may improve generalisation and can reduce the performance disparity between melanoma detection in lighter and darker skin tones.
引用
收藏
页码:1 / 11
页数:11
相关论文
共 23 条
[1]   Turning a Blind Eye: Explicit Removal of Biases and Variation from Deep Neural Network Embeddings [J].
Alvi, Mohsan ;
Zisserman, Andrew ;
Nellaker, Christoffer .
COMPUTER VISION - ECCV 2018 WORKSHOPS, PT I, 2019, 11129 :556-572
[2]   A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task [J].
Brinker, Titus J. ;
Hekler, Achim ;
Enk, Alexander H. ;
Klode, Joachim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Haferkamp, Sebastian ;
Schadendorf, Dirk ;
Froehling, Stefan ;
Utikal, Jochen S. ;
von Kalle, Christof ;
Ludwig-Peitsch, Wiebke ;
Sirokay, Judith ;
Heinzerling, Lucie ;
Albrecht, Magarete ;
Baratella, Katharina ;
Bischof, Lena ;
Chorti, Eleftheria ;
Dith, Anna ;
Drusio, Christina ;
Giese, Nina ;
Gratsias, Emmanouil ;
Griewank, Klaus ;
Hallasch, Sandra ;
Hanhart, Zdenka ;
Herz, Saskia ;
Hohaus, Katja ;
Jansen, Philipp ;
Jockenhoefer, Finja ;
Kanaki, Theodora ;
Knispel, Sarah ;
Leonhard, Katja ;
Martaki, Anna ;
Matei, Liliana ;
Matull, Johanna ;
Olischewski, Alexandra ;
Petri, Maximilian ;
Placke, Jan-Malte ;
Raub, Simon ;
Salva, Katrin ;
Schlott, Swantje ;
Sody, Elsa ;
Steingrube, Nadine ;
Stoffels, Ingo ;
Ugurel, Selma ;
Sondermann, Wiebke ;
Zaremba, Anne ;
Gebhardt, Christoffer ;
Booken, Nina .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :148-154
[3]   Comparing artificial intelligence algorithms to 157 German dermatologists: the melanoma classification benchmark [J].
Brinker, Titus J. ;
Hekler, Achim ;
Hauschild, Axel ;
Berking, Carola ;
Schilling, Bastian ;
Enk, Alexander H. ;
Haferkamp, Sebastian ;
Karoglan, Ante ;
von Kalle, Christof ;
Weichenthal, Michael ;
Sattler, Elke ;
Schadendorf, Dirk ;
Gaiser, Maria R. ;
Klode, Joachim ;
Utikal, Jochen S. .
EUROPEAN JOURNAL OF CANCER, 2019, 111 :30-37
[4]  
Buolamwini J., 2018, FACCT, P77
[5]  
Codella NCF, 2018, I S BIOMED IMAGING, P168, DOI 10.1109/ISBI.2018.8363547
[6]   Racial Differences in Survival after Surgical Treatment for Melanoma [J].
Collins, Karen Kadela ;
Fields, Ryan C. ;
Baptiste, Dadrie ;
Liu, Ying ;
Moley, Jeffrey ;
Jeffe, Donna B. .
ANNALS OF SURGICAL ONCOLOGY, 2011, 18 (10) :2925-2936
[7]   THE VALIDITY AND PRACTICALITY OF SUN-REACTIVE SKIN TYPE-I THROUGH TYPE-VI [J].
FITZPATRICK, TB .
ARCHIVES OF DERMATOLOGY, 1988, 124 (06) :869-871
[8]  
Ganin Y, 2017, ADV COMPUT VIS PATT, P189, DOI 10.1007/978-3-319-58347-1_10
[9]  
Groh M, 2021, Arxiv, DOI [arXiv:2104.09957, DOI 10.48550/ARXIV.2104.09957, 10.48550/arXiv.2104.09957]
[10]   Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists [J].
Haenssle, H. A. ;
Fink, C. ;
Schneiderbauer, R. ;
Toberer, F. ;
Buhl, T. ;
Blum, A. ;
Kalloo, A. ;
Hassens, A. Ben Hadj ;
Thomas, L. ;
Enk, A. ;
Uhlmann, L. .
ANNALS OF ONCOLOGY, 2018, 29 (08) :1836-1842