Drosophila as a Genetic Model for Hematopoiesis

被引:184
作者
Banerjee, Utpal [1 ,2 ,3 ,4 ]
Girard, Juliet R. [1 ]
Goins, Lauren M. [1 ]
Spratford, Carrie M. [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mol Cell & Dev Biol, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Inst Mol Biol, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Dept Biol Chem, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, Eli & Edythe Broad Ctr Regenerat Med & Stem Cell, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院;
关键词
crystal cell; Drosophila; FlyBook; hematopoiesis; hemocyte; innate immunity; lamellocyte; lymph gland; plasmatocyte; stress response; CELLULAR IMMUNE-RESPONSE; MELANOTIC TUMOR-FORMATION; WASP LEPTOPILINA-BOULARDI; SOLUBLE GUANYLYL CYCLASES; STEM-CELL; BLOOD-CELLS; PARASITOID-WASP; HOST-DEFENSE; PROGENITOR MAINTENANCE; HEMOCYTE LINEAGES;
D O I
10.1534/genetics.118.300223
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In this FlyBook chapter, we present a survey of the current literature on the development of the hematopoietic system in Drosophila. The Drosophila blood system consists entirely of cells that function in innate immunity, tissue integrity, wound healing, and various forms of stress response, and are therefore functionally similar to myeloid cells in mammals. The primary cell types are specialized for phagocytic, melanization, and encapsulation functions. As in mammalian systems, multiple sites of hematopoiesis are evident in Drosophila and the mechanisms involved in this process employ many of the same molecular strategies that exemplify blood development in humans. Drosophila blood progenitors respond to internal and external stress by coopting developmental pathways that involve both local and systemic signals. An important goal of these Drosophila studies is to develop the tools and mechanisms critical to further our understanding of human hematopoiesis during homeostasis and dysfunction.
引用
收藏
页码:367 / 417
页数:51
相关论文
共 378 条
[1]  
ABEL T, 1993, DEVELOPMENT, V119, P623
[2]   Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury [J].
Agaisse, H ;
Petersen, UM ;
Boutros, M ;
Mathey-Prevot, B ;
Perrimon, N .
DEVELOPMENTAL CELL, 2003, 5 (03) :441-450
[3]   gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila [J].
Alfonso, TB ;
Jones, BW .
DEVELOPMENTAL BIOLOGY, 2002, 248 (02) :369-383
[4]   Tissue Damage-Induced Intestinal Stem Cell Division in Drosophila [J].
Amcheslavsky, Alla ;
Jiang, Jin ;
Ip, Y. Tony .
CELL STEM CELL, 2009, 4 (01) :49-61
[5]   Transdifferentiation and Proliferation in Two Distinct Hemocyte Lineages in Drosophila melanogaster Larvae after Wasp Infection [J].
Anderl, Ines ;
Vesala, Laura ;
Ihalainen, Teemu O. ;
Vanha-aho, Leena-Maija ;
Ando, Istvan ;
Ramet, Mika ;
Hultmark, Dan .
PLOS PATHOGENS, 2016, 12 (07)
[6]   Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain [J].
Arendt, D ;
Tessmar-Raible, K ;
Snyman, H ;
Dorresteijn, AW ;
Wittbrodt, J .
SCIENCE, 2004, 306 (5697) :869-871
[7]  
Asha H, 2003, GENETICS, V163, P203
[8]   Suppression of Drosophila cellular immunity by directed expression of the ExoS toxin GAP domain of Pseudomonas aeruginosa [J].
Avet-Rochex, A ;
Bergeret, E ;
Attree, I ;
Meister, M ;
Fauvarque, MO .
CELLULAR MICROBIOLOGY, 2005, 7 (06) :799-810
[9]   Rac2 is a major actor of Drosophila resistance to Pseudomonas aeruginosa acting in phagocytic cells [J].
Avet-Rochex, Amelie ;
Perrin, Jackie ;
Bergeret, Evelyne ;
Fauvarque, Marie-Odile .
GENES TO CELLS, 2007, 12 (10) :1193-1204
[10]   An in vivo RNA interference screen identifies gene networks controlling Drosophila melanogaster blood cell homeostasis [J].
Avet-Rochex, Amelie ;
Boyer, Karene ;
Polesello, Cedric ;
Gobert, Vanessa ;
Osman, Dani ;
Roch, Fernando ;
Auge, Benoit ;
Zanet, Jennifer ;
Haenlin, Marc ;
Waltzer, Lucas .
BMC DEVELOPMENTAL BIOLOGY, 2010, 10