Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C-H Activation

被引:628
作者
Hyster, Todd K. [1 ,2 ]
Knoerr, Livia [1 ]
Ward, Thomas R. [1 ]
Rovis, Tomislav [2 ]
机构
[1] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland
[2] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
基金
瑞士国家科学基金会;
关键词
ARTIFICIAL METALLOENZYMES; PROTEIN; HYDROGENATION; DESIGN; EVOLUTION; CATALYST; ENZYMES; ALKYNES;
D O I
10.1126/science.1226132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C-H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
引用
收藏
页码:500 / 503
页数:4
相关论文
共 30 条
[1]   DNA-based asymmetric catalysis [J].
Boersma, Arnold J. ;
Megens, Rik P. ;
Feringa, Ben L. ;
Roelfes, Gerard .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) :2083-2092
[2]   Artificial metalloenzymes for enantio selective catalysis: the phenomenon of protein accelerated catalysis [J].
Collot, J ;
Humbert, N ;
Skander, M ;
Klein, G ;
Ward, TR .
JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2004, 689 (25) :4868-4871
[3]   Bioinspired Catalyst Design and Artificial Metalloenzymes [J].
Deuss, Peter J. ;
den Heeten, Rene ;
Laan, Wouter ;
Kamer, Paul C. J. .
CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (17) :4680-4698
[4]  
Green N. M., 1970, Methods in Enzymology, V18A, P418, DOI 10.1016/0076-6879(71)18342-5
[5]   Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies [J].
Guimond, Nicolas ;
Gorelsky, Serge I. ;
Fagnou, Keith .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (16) :6449-6457
[6]   Design strategies for the creation of artificial metalloenzymes [J].
Heinisch, Tillmann ;
Ward, Thomas R. .
CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (02) :184-199
[7]   Rhodium-Catalyzed Oxidative Cycloaddition of Benzamides and Alkynes via C-H/N-H Activation [J].
Hyster, Todd K. ;
Rovis, Tomislav .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (30) :10565-10569
[8]  
Khare SD, 2012, NAT CHEM BIOL, V8, P294, DOI [10.1038/NCHEMBIO.777, 10.1038/nchembio.777]
[9]   Overview of the Mechanistic Work on the Concerted Metallation-Deprotonation Pathway [J].
Lapointe, David ;
Fagnou, Keith .
CHEMISTRY LETTERS, 2010, 39 (11) :1119-1126
[10]   Catalytic hydrogenation of itaconic acid in a biotinylated Pyrphos-rhodium(I) system in a protein cavity [J].
Lin, CC ;
Lin, CW ;
Chan, ASC .
TETRAHEDRON-ASYMMETRY, 1999, 10 (10) :1887-1893