Biotinylated Rh(III) Complexes in Engineered Streptavidin for Accelerated Asymmetric C-H Activation

被引:618
作者
Hyster, Todd K. [1 ,2 ]
Knoerr, Livia [1 ]
Ward, Thomas R. [1 ]
Rovis, Tomislav [2 ]
机构
[1] Univ Basel, Dept Chem, CH-4056 Basel, Switzerland
[2] Colorado State Univ, Dept Chem, Ft Collins, CO 80523 USA
基金
瑞士国家科学基金会;
关键词
ARTIFICIAL METALLOENZYMES; PROTEIN; HYDROGENATION; DESIGN; EVOLUTION; CATALYST; ENZYMES; ALKYNES;
D O I
10.1126/science.1226132
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Enzymes provide an exquisitely tailored chiral environment to foster high catalytic activities and selectivities, but their native structures are optimized for very specific biochemical transformations. Designing a protein to accommodate a non-native transition metal complex can broaden the scope of enzymatic transformations while raising the activity and selectivity of small-molecule catalysis. Here, we report the creation of a bifunctional artificial metalloenzyme in which a glutamic acid or aspartic acid residue engineered into streptavidin acts in concert with a docked biotinylated rhodium(III) complex to enable catalytic asymmetric carbon-hydrogen (C-H) activation. The coupling of benzamides and alkenes to access dihydroisoquinolones proceeds with up to nearly a 100-fold rate acceleration compared with the activity of the isolated rhodium complex and enantiomeric ratios as high as 93:7.
引用
收藏
页码:500 / 503
页数:4
相关论文
共 30 条
  • [1] DNA-based asymmetric catalysis
    Boersma, Arnold J.
    Megens, Rik P.
    Feringa, Ben L.
    Roelfes, Gerard
    [J]. CHEMICAL SOCIETY REVIEWS, 2010, 39 (06) : 2083 - 2092
  • [2] Artificial metalloenzymes for enantio selective catalysis: the phenomenon of protein accelerated catalysis
    Collot, J
    Humbert, N
    Skander, M
    Klein, G
    Ward, TR
    [J]. JOURNAL OF ORGANOMETALLIC CHEMISTRY, 2004, 689 (25) : 4868 - 4871
  • [3] Bioinspired Catalyst Design and Artificial Metalloenzymes
    Deuss, Peter J.
    den Heeten, Rene
    Laan, Wouter
    Kamer, Paul C. J.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (17) : 4680 - 4698
  • [4] Green N. M., 1970, Methods in Enzymology, V18A, P418, DOI 10.1016/0076-6879(71)18342-5
  • [5] Rhodium(III)-Catalyzed Heterocycle Synthesis Using an Internal Oxidant: Improved Reactivity and Mechanistic Studies
    Guimond, Nicolas
    Gorelsky, Serge I.
    Fagnou, Keith
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (16) : 6449 - 6457
  • [6] Design strategies for the creation of artificial metalloenzymes
    Heinisch, Tillmann
    Ward, Thomas R.
    [J]. CURRENT OPINION IN CHEMICAL BIOLOGY, 2010, 14 (02) : 184 - 199
  • [7] Rhodium-Catalyzed Oxidative Cycloaddition of Benzamides and Alkynes via C-H/N-H Activation
    Hyster, Todd K.
    Rovis, Tomislav
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (30) : 10565 - 10569
  • [8] Khare SD, 2012, NAT CHEM BIOL, V8, P294, DOI [10.1038/NCHEMBIO.777, 10.1038/nchembio.777]
  • [9] Overview of the Mechanistic Work on the Concerted Metallation-Deprotonation Pathway
    Lapointe, David
    Fagnou, Keith
    [J]. CHEMISTRY LETTERS, 2010, 39 (11) : 1119 - 1126
  • [10] Catalytic hydrogenation of itaconic acid in a biotinylated Pyrphos-rhodium(I) system in a protein cavity
    Lin, CC
    Lin, CW
    Chan, ASC
    [J]. TETRAHEDRON-ASYMMETRY, 1999, 10 (10) : 1887 - 1893