Hydrazine-Enabled One-Step Synthesis of Metal Nanoparticle-Functionalized Gradient Porous Poly(ionic liquid) Membranes

被引:7
作者
Khorsand Kheirabad, Atefeh [1 ]
Zhou, Xianjing [2 ]
Xie, Dongjiu [3 ]
Wang, Hong [4 ]
Yuan, Jiayin [1 ]
机构
[1] Stockholm Univ, Dept Mat & Environm Chem MMK, S-10691 Stockholm, Sweden
[2] Zhejiang Sci Tech Univ, Dept Chem, Hangzhou 310018, Peoples R China
[3] Helmholtz Zentrum Berlin Mat & Energie, Inst Electrochem Energy Storage, Hahn Meitner Pl 1, D-14109 Berlin, Germany
[4] Nankai Univ, Key Lab Funct Polymer Mat, Minist Educ, Inst Polymer Chem,Coll Chem, Tianjin 300071, Peoples R China
基金
欧洲研究理事会; 美国国家科学基金会; 瑞典研究理事会;
关键词
gradient porous membranes; hydrazine; metal nanoparticles; poly(ionic liquid)s; POLYELECTROLYTE COMPLEX MEMBRANES; POLYMER ELECTROLYTE MEMBRANES; BY-LAYER ADSORPTION; NANOFILTRATION; CONDUCTIVITY; DESIGN;
D O I
10.1002/marc.202000143
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
In this communication, a one-step synthetic route is reported toward free-standing metal-nanoparticle-functionalized gradient porous polyelectrolyte membranes (PPMs). The membranes are produced by soaking a glass-plate-supported blend film that consists of a hydrophobic poly(ionic liquid) (PIL), poly(acrylic acid), and a metal salt, into an aqueous hydrazine solution. Upon diffusion of water and hydrazine molecules into the blend film, a phase separation process of the hydrophobic PIL and an ionic crosslinking reaction via interpolyelectrolyte complexation occur side by side to form the PPM. Simultaneously, due to the reductive nature of hydrazine, the metal salt inside the polymer blend film is reduced in situ by hydrazine into metal nanoparticles that anchor onto the PPM. The as-obtained hybrid porous membrane is proven functional in the catalytic reduction of p-nitrophenol. This one-step method to grow metal nanoparticles and gradient porous membranes can simplify future fabrication processes of multifunctional PPMs.
引用
收藏
页数:5
相关论文
共 38 条
  • [1] Innovative polyelectrolytes/poly(ionic liquid)s for energy and the environment
    Ajjan, Fatima N.
    Ambrogi, Martina
    Tiruye, Girum Ayalneh
    Cordella, Daniela
    Fernandes, Ana M.
    Grygiel, Konrad
    Isik, Mehmet
    Patil, Nagaraj
    Porcarelli, Luca
    Rocasalbas, Gillem
    Vendramientto, Giordano
    Zeglio, Erica
    Antonietti, Markus
    Detrembleur, Cristophe
    Inganas, Olle
    Jerome, Christine
    Marcilla, Rebeca
    Mecerreyes, David
    Moreno, Monica
    Taton, Daniel
    Solin, Niclas
    Yuan, Jiayin
    [J]. POLYMER INTERNATIONAL, 2017, 66 (08) : 1119 - 1128
  • [2] Sustainable Membrane Production through Polyelectrolyte Complexation Induced Aqueous Phase Separation
    Baig, Muhammad Irshad
    Durmaz, Elif Nur
    Willott, Joshua D.
    de Vos, Wiebe M.
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (05)
  • [3] Improving CO2 selectivity in polymerized room-temperature ionic liquid gas separation membranes through incorporation of polar substituents
    Bara, Jason E.
    Gabriel, Christopher J.
    Hatakeyama, Evan S.
    Carlisle, Trevor K.
    Lessmann, Sonja
    Noble, Richard D.
    Gin, Douglas L.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2008, 321 (01) : 3 - 7
  • [4] Halogen-free polyarylphosphonates and polyelectrolyte membranes for PEMFC by nickel-catalyzed phosphonylation with silylated phosphates
    Bock, Thorsten
    Muelhaupt, Rolf
    Moehwald, Helmut
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (24) : 2065 - 2071
  • [5] Robust Polymer Electrolyte Membranes with High Ambient-Temperature Lithium-Ion Conductivity via Polymerization-Induced Microphase Separation
    Chopade, Sujay A.
    Au, Jesus G.
    Li, Ziang
    Schmidt, Peter W.
    Hillmyer, Marc A.
    Lodge, Timothy P.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (17) : 14561 - 14565
  • [6] Fuzzy nanoassemblies: Toward layered polymeric multicomposites
    Decher, G
    [J]. SCIENCE, 1997, 277 (5330) : 1232 - 1237
  • [7] Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports
    Dotzauer, David M.
    Dai, Jinhua
    Sun, Lei
    Bruening, Merlin L.
    [J]. NANO LETTERS, 2006, 6 (10) : 2268 - 2272
  • [8] Imidazolium sulfonate-containing pentablock copolymer-ionic liquid membranes for electroactive actuators
    Gao, Renlong
    Wang, Dong
    Heflin, James R.
    Long, Timothy E.
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (27) : 13473 - 13476
  • [9] Designing the Next Generation of Chemical Separation Membranes
    Gin, Douglas L.
    Noble, Richard D.
    [J]. SCIENCE, 2011, 332 (6030) : 674 - 676
  • [10] Harnessing Poly(ionic liquid)s for Sensing Applications
    Guterman, Ryan
    Ambrogi, Martina
    Yuan, Jiayin
    [J]. MACROMOLECULAR RAPID COMMUNICATIONS, 2016, 37 (14) : 1106 - 1115