Transcriptome sequencing for high throughput SNP development and genetic mapping in Pea

被引:79
|
作者
Duarte, Jorge [1 ]
Riviere, Nathalie [1 ]
Baranger, Alain [2 ]
Aubert, Gregoire [4 ]
Burstin, Judith [4 ]
Cornet, Laurent [1 ]
Lavaud, Clement [2 ]
Lejeune-Henaut, Isabelle [5 ]
Martinant, Jean-Pierre [3 ]
Pichon, Jean-Philippe [1 ]
Pilet-Nayel, Marie-Laure [2 ]
Boutet, Gilles [2 ]
机构
[1] Biogemma, F-63720 Chappes, France
[2] INRA, IGEPP, UMR 1349, F-35653 Le Rheu, France
[3] Limagrain Europe, Ctr Rech, F-63720 Chappes, France
[4] INRA, UMR Agroecol 1347, F-21065 Dijon, France
[5] INRA, SADV, UMR 1281, F-80203 Peronne, France
来源
BMC GENOMICS | 2014年 / 15卷
关键词
Pisum sativum; Medicago truncatula; Next generation sequencing; Genetic diversity; Composite genetic map; Synteny; Marker assisted selection; SINGLE-NUCLEOTIDE POLYMORPHISM; QUANTITATIVE TRAIT LOCI; PISUM-SATIVUM L; PARTIAL RESISTANCE; CANDIDATE GENES; FIELD PEA; MYCOSPHAERELLA-PINODES; APHANOMYCES-EUTEICHES; MEDICAGO-TRUNCATULA; LINKAGE MAP;
D O I
10.1186/1471-2164-15-126
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Pea has a complex genome of 4.3 Gb for which only limited genomic resources are available to date. Although SNP markers are now highly valuable for research and modern breeding, only a few are described and used in pea for genetic diversity and linkage analysis. Results: We developed a large resource by cDNA sequencing of 8 genotypes representative of modern breeding material using the Roche 454 technology, combining both long reads (400 bp) and high coverage (3.8 million reads, reaching a total of 1,369 megabases). Sequencing data were assembled and generated a 68 K unigene set, from which 41 K were annotated from their best blast hit against the model species Medicago truncatula. Annotated contigs showed an even distribution along M. truncatula pseudochromosomes, suggesting a good representation of the pea genome. 10 K pea contigs were found to be polymorphic among the genetic material surveyed, corresponding to 35 K SNPs. We validated a subset of 1538 SNPs through the GoldenGate assay, proving their ability to structure a diversity panel of breeding germplasm. Among them, 1340 were genetically mapped and used to build a new consensus map comprising a total of 2070 markers. Based on blast analysis, we could establish 1252 bridges between our pea consensus map and the pseudochromosomes of M. truncatula, which provides new insight on synteny between the two species. Conclusions: Our approach created significant new resources in pea, i.e. the most comprehensive genetic map to date tightly linked to the model species M. truncatula and a large SNP resource for both academic research and breeding.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Development of SNP markers in lined seahorse (Hippocampus erectus) based on transcriptome sequencing
    Hongyue Qu
    Wei Luo
    Qiang Lin
    Conservation Genetics Resources, 2016, 8 : 1 - 4
  • [22] Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea
    Chrystel Deulvot
    Hélène Charrel
    Amandine Marty
    Françoise Jacquin
    Cécile Donnadieu
    Isabelle Lejeune-Hénaut
    Judith Burstin
    Grégoire Aubert
    BMC Genomics, 11
  • [23] Transcriptome sequencing and SNP detection in Phoebe chekiangensis
    He, Bing
    Li, Yingang
    Ni, Zhouxian
    Xui, Li-an
    PEERJ, 2017, 5
  • [24] High-Throughput Sequencing and Rare Genetic Diseases
    Makrythanasis, P.
    Antonarakis, S. E.
    MOLECULAR SYNDROMOLOGY, 2012, 3 (05) : 197 - 203
  • [25] Genome-wide SNP detection in the great tit Parus major using high throughput sequencing
    Van Bers, Nikkie E. M.
    Van Oers, Kees
    Kerstens, Hindrik H. D.
    Dibbits, Bert W.
    Crooijmans, Richard P. M. A.
    Visser, Marcel E.
    Groenen, Martien A. M.
    MOLECULAR ECOLOGY, 2010, 19 : 89 - 99
  • [26] Development and implementation of high-throughput SNP genotyping in barley
    Close, Timothy J.
    Bhat, Prasanna R.
    Lonardi, Stefano
    Wu, Yonghui
    Rostoks, Nils
    Ramsay, Luke
    Druka, Arnis
    Stein, Nils
    Svensson, Jan T.
    Wanamaker, Steve
    Bozdag, Serdar
    Roose, Mikeal L.
    Moscou, Matthew J.
    Chao, Shiaoman
    Varshney, Rajeev K.
    Szuecs, Peter
    Sato, Kazuhiro
    Hayes, Patrick M.
    Matthews, David E.
    Kleinhofs, Andris
    Muehlbauer, Gary J.
    DeYoung, Joseph
    Marshall, David F.
    Madishetty, Kavitha
    Fenton, Raymond D.
    Condamine, Pascal
    Graner, Andreas
    Waugh, Robbie
    BMC GENOMICS, 2009, 10
  • [27] Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic mapping in chickpea and comparative mapping in legumes
    Hiremath, Pavana J.
    Kumar, Ashish
    Penmetsa, Ramachandra Varma
    Farmer, Andrew
    Schlueter, Jessica A.
    Chamarthi, Siva K.
    Whaley, Adam M.
    Carrasquilla-Garcia, Noelia
    Gaur, Pooran M.
    Upadhyaya, Hari D.
    Kishor, Polavarapu B. Kavi
    Shah, Trushar M.
    Cook, Douglas R.
    Varshney, Rajeev K.
    PLANT BIOTECHNOLOGY JOURNAL, 2012, 10 (06) : 716 - 732
  • [28] Genotyping by sequencing for SNP marker development in onion
    Labate, Joanne A.
    Glaubitz, Jeffrey C.
    Havey, Michael J.
    GENOME, 2020, 63 (12) : 607 - 613
  • [29] Development of a target capture sequencing SNP genotyping platform for genetic analysis and genomic breeding in rapeseed
    Li, Xiaodong
    Liu, Xumei
    Fan, Yonghai
    Li, Shengting
    Yu, Mengna
    Qian, Mingchao
    Chen, Yuling
    Chen, Hongqiao
    Li, Xinchun
    Liu, Bei
    Xu, Xinfu
    Qu, Cunmin
    Li, Jiana
    Lu, Kun
    CROP JOURNAL, 2023, 11 (02): : 499 - 510
  • [30] Transcriptome sequencing for SNP discovery across Cucumis melo
    Blanca, Jose
    Esteras, Cristina
    Ziarsolo, Pello
    Perez, Daniel
    Fernandez-Pedrosa, Victoria
    Collado, Carmen
    Rodriguez de Pablos, Raquel
    Ballester, Alida
    Roig, Cristina
    Canizares, Joaquin
    Pico, Belen
    BMC GENOMICS, 2012, 13