Modular Macdonald functions and generalized Newton's identity

被引:0
作者
Cai, Tommy Wuxing [1 ,2 ]
Jing, Naihuan [3 ]
Zhang, Jian [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Guangdong, Peoples R China
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
Newton's identities; Macdonald functions; Modular Hall-Littlewood polynomials; Vertex operators; VERTEX OPERATORS; POLYNOMIALS; ROOTS;
D O I
10.1016/j.jalgebra.2014.10.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Based on a generalized Newton's identity, we construct a family of symmetric functions which deform the modular Hall-Littlewood functions. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:124 / 136
页数:13
相关论文
共 16 条
[1]   COLLECTIVE FIELD-THEORY, CALOGERO-SUTHERLAND MODEL AND GENERALIZED MATRIX MODELS [J].
AWATA, H ;
MATSUO, Y ;
ODAKE, S ;
SHIRAISHI, J .
PHYSICS LETTERS B, 1995, 347 (1-2) :49-55
[2]   A generalization of Newton's identity and Macdonald functions [J].
Cai, Tommy Wuxing ;
Jing, Naihuan .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 125 :342-356
[3]   Applications of a Laplace-Beltrami operator for Jack polynomials [J].
Cai, Wuxing ;
Jing, Naihuan .
EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (04) :556-571
[4]   The correlation functions of vertex operators and Macdonald polynomials [J].
Cheng, Shun-Jen ;
Wang, Weiqiang .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2007, 25 (01) :43-56
[5]   A remarkable q,t-Catalan sequence and q-Lagrange inversion [J].
Garsia, AM ;
Haiman, M .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1996, 5 (03) :191-244
[6]  
JING N, 1994, P QUANTUM TOPOLOGY, P111
[7]   VERTEX OPERATORS AND HALL-LITTLEWOOD SYMMETRICAL FUNCTIONS [J].
JING, NH .
ADVANCES IN MATHEMATICS, 1991, 87 (02) :226-248
[8]  
Kerov S.V, 1992, ADV SOVIET MATH, V9, P67
[9]   GREEN POLYNOMIALS AND HALL-LITTLEWOOD FUNCTIONS AT ROOTS OF UNITY [J].
LASCOUX, A ;
LECLERC, B ;
THIBON, JY .
EUROPEAN JOURNAL OF COMBINATORICS, 1994, 15 (02) :173-180
[10]  
Macdonald I. G., 1995, Symmetric Functions, and Hall Polynomials, V2nd