Bayesian Inference of Subglacial Topography Using Mass Conservation

被引:36
作者
Brinkerhoff, Douglas J. [1 ]
Aschwanden, Andy [1 ]
Truffer, Martin [1 ]
机构
[1] Univ Alaska Fairbanks, Inst Geophys, Fairbanks, AK 99775 USA
基金
美国国家科学基金会;
关键词
inverse methods; Bayesian inference; subglacial topography; CALCULATE ICE THICKNESS; BED TOPOGRAPHY; JAKOBSHAVN ISBRAE; COLUMBIA GLACIER; GREENLAND; VOLUME; RESOLUTION; BALANCE; FLOW; STORGLACIAREN;
D O I
10.3389/feart.2016.00008
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We develop a Bayesian model for estimating ice thickness given sparse observations coupled with estimates of surface mass balance, surface elevation change, and surface velocity. These fields are related through mass conservation. We use the Metropolis-Hastings algorithm to sample from the posterior probability distribution of ice thickness for three cases: a synthetic mountain glacier, Storglaciaren, and Jakobshavn Isbre. Use of continuity in interpolation improves thickness estimates where relative velocity and surface mass balance errors are small, a condition difficult to maintain in regions of slow flow and surface mass balance near zero. Estimates of thickness uncertainty depend sensitively on spatial correlation. When this structure is known, we suggest a thickness measurement spacing of one to two times the correlation length to take best advantage of continuity based interpolation techniques. To determine ideal measurement spacing, the structure of spatial correlation must be better quantified.
引用
收藏
页数:15
相关论文
共 46 条
  • [1] Atkinson K.E., 1978, An Introduction to Numerical Analysis
  • [2] Glacier volume estimation as an ill-posed inversion
    Bahr, David B.
    Pfeffer, W. Tad
    Kaser, Georg
    [J]. JOURNAL OF GLACIOLOGY, 2014, 60 (223) : 922 - 934
  • [3] A new bed elevation dataset for Greenland
    Bamber, J. L.
    Griggs, J. A.
    Hurkmans, R. T. W. L.
    Dowdeswell, J. A.
    Gogineni, S. P.
    Howat, I.
    Mouginot, J.
    Paden, J.
    Palmer, S.
    Rignot, E.
    Steinhage, D.
    [J]. CRYOSPHERE, 2013, 7 (02) : 499 - 510
  • [4] A new ice thickness and bed data set for the Greenland ice sheet 1. Measurement, data reduction, and errors
    Bamber, JL
    Layberry, RL
    Gogineni, S
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D24) : 33773 - 33780
  • [5] Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project)
    Bindschadler, Robert A.
    Nowicki, Sophie
    Abe-Ouchi, Ayako
    Aschwanden, Andy
    Choi, Hyeungu
    Fastook, Jim
    Granzow, Glen
    Greve, Ralf
    Gutowski, Gail
    Herzfeld, Ute
    Jackson, Charles
    Johnson, Jesse
    Khroulev, Constantine
    Levermann, Anders
    Lipscomb, William H.
    Martin, Maria A.
    Morlighem, Mathieu
    Parizek, Byron R.
    Pollard, David
    Price, Stephen F.
    Ren, Diandong
    Saito, Fuyuki
    Sato, Tatsuru
    Seddik, Hakime
    Seroussi, Helene
    Takahashi, Kunio
    Walker, Ryan
    Wang, Wei Li
    [J]. JOURNAL OF GLACIOLOGY, 2013, 59 (214) : 195 - 224
  • [6] A stabilized finite element method for calculating balance velocities in ice sheets
    Brinkerhoff, D.
    Johnson, J.
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2015, 8 (05) : 1275 - 1283
  • [7] Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS
    Brinkerhoff, D. J.
    Johnson, J. V.
    [J]. CRYOSPHERE, 2013, 7 (04) : 1161 - 1184
  • [8] A Monte Carlo error analysis for basal sliding velocity calculations
    Chandler, D. M.
    Hubbard, A. L.
    Hubbard, B. P.
    Nienow, P. W.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2006, 111 (F4)
  • [9] Christensen R., 2011, Bayesian ideas and data analysis : an introduction for scientists and statisticians
  • [10] Monte Carlo ice flow modeling projects a new stable configuration for Columbia Glacier, Alaska, c. 2020
    Colgan, W.
    Pfeffer, W. T.
    Rajaram, H.
    Abdalati, W.
    Balog, J.
    [J]. CRYOSPHERE, 2012, 6 (06) : 1395 - 1409