Anisotropy of Shear Relaxation in Confined Thin Films of Unentangled Polymer Melts

被引:7
作者
Abberton, Brendan C. [1 ]
Liu, Wing Kam [1 ]
Keten, Sinan [1 ]
机构
[1] Northwestern Univ, Theoret & Appl Mech, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
GLASS-TRANSITION TEMPERATURE; MOLECULAR-DYNAMICS; IRREVERSIBLE-PROCESSES; ATOMISTIC SIMULATION; MELT/SOLID INTERFACE; LOCAL DYNAMICS; CHAIN MOBILITY; SURFACE; CONFORMATIONS; DEPENDENCE;
D O I
10.1021/acs.macromol.5b01204
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The anisotropic shear relaxation functions of confined thin films of unentangled polymer melts are measured via nonequilibrium step strain simulations of in-plane and out-of-plane shear using the finitely extensible, nonlinear-elastic (FENE) model. We show that the classical Rouse model unsurprisingly fails to predict the thin-film relaxation functions in response to out-of-plane shear, due in part to non-Gaussian conformation statistics in the dimension perpendicular to the sub/superstrate. Using an alternate empirical model for the out-of-plane response, we quantify decreases in the plateau modulus G(perpendicular to)(P) relaxation time lambda(perpendicular to), and viscosity eta(perpendicular to) and an increase in the logarithmic relaxation rate r(perpendicular to) as functions of film thickness, and we discuss these anisotropic changes in stress-relaxation properties in terms of structural/conformation changes on the microscopic level, namely the relative contraction and non-Gaussian quality of polymer conformations in the dimension normal to the substrate and the resulting phenomenon of cooperative relaxation. We then incorporate these into a semiempirical extension to the Rouse model which closely predicts our computational results and which will be useful for further study of polymer thin films.
引用
收藏
页码:7631 / 7639
页数:9
相关论文
共 69 条
[1]   Molecular dynamics study of polymer melt confined between walls [J].
Aoyagi, T ;
Takimoto, J ;
Doi, M .
JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (01) :552-559
[2]   Equilibration of long chain polymer melts in computer simulations [J].
Auhl, R ;
Everaers, R ;
Grest, GS ;
Kremer, K ;
Plimpton, SJ .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (24) :12718-12728
[3]   Glass transition behavior of polymer films of nanoscopic dimensions [J].
Baljon, ARC ;
Van Weert, MHM ;
DeGraaff, RB ;
Khare, R .
MACROMOLECULES, 2005, 38 (06) :2391-2399
[4]  
Cox W., 1959, AM SOC TESTING MAT S, V247, P178
[5]   Glass transitions in thin polymer films [J].
de Gennes, PG .
EUROPEAN PHYSICAL JOURNAL E, 2000, 2 (03) :201-203
[6]  
Doi M., 1988, THEORY POLYM DYNAMIC, V73
[7]   The distribution of glass-transition temperatures in nanoscopically confined glass formers [J].
Ellison, CJ ;
Torkelson, JM .
NATURE MATERIALS, 2003, 2 (10) :695-700
[8]   How Thick is the Interphase in an Ultrathin Polymer Film? Coarse-Grained Molecular Dynamics Simulations of Polyamide-6,6 on Graphene [J].
Eslami, Hossein ;
Mueller-Plathe, Florian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (10) :5249-5257
[9]   Relaxation dynamics in ultrathin polymer films [J].
Forrest, JA ;
Svanberg, C ;
Revesz, K ;
Rodahl, M ;
Torell, LM ;
Kasemo, B .
PHYSICAL REVIEW E, 1998, 58 (02) :R1226-R1229
[10]  
Forrest JA, 2002, EUR PHYS J E, V8, P261, DOI 10.1140/epje/i2002-10005-5