Polynomial identities, indices, and duality for the N=1 superconformal model SM(2,4v)

被引:30
作者
Berkovich, A [1 ]
McCoy, BM [1 ]
Orrick, WP [1 ]
机构
[1] SUNY STONY BROOK,INST THEORET PHYS,STONY BROOK,NY 11794
关键词
D O I
10.1007/BF02179546
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove polynomial identities for the N = 1 superconformal model SM(2, 4v) which generalize and extend the known Fermi/Bose character identities. Our proof uses the q-trinomial coefficients of Andrews and Baxter on the bosonic side and a recently introduced very general method of producing recursion relations for q-series on the Fermionic side. We use these polynomials to demonstrate a dual relation under q-->q(-1) between SM(2, 4v) and M(2v - 1, 4v). We also introduce a generalization of the Witten index which is expressible in terms of the Rogers false theta functions.
引用
收藏
页码:795 / 837
页数:43
相关论文
共 69 条
[31]   A bijection which implies Melzer's polynomial identities: The chi(1,1)((p,p+1)) case [J].
Foda, O ;
Warnaar, SO .
LETTERS IN MATHEMATICAL PHYSICS, 1996, 36 (02) :145-155
[32]  
FODA O, VIRASORO CHARACTER I
[33]   FURTHER EXACT-SOLUTIONS OF THE 8-VERTEX SOS MODEL AND GENERALIZATIONS OF THE ROGERS-RAMANUJAN IDENTITIES [J].
FORRESTER, PJ ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1985, 38 (3-4) :435-472
[34]  
GEORGIEV G, IN PRESS J PURE APPA
[35]   LATTICE MODELS AND GENERALIZED ROGERS-RAMANUJAN IDENTITIES [J].
GEPNER, D .
PHYSICS LETTERS B, 1995, 348 (3-4) :377-385
[36]  
GOLLNITZ H, 1967, J REINE ANGEW MATH, V225, P154
[37]   FERMIONIC QUASI-PARTICLE REPRESENTATIONS FOR CHARACTERS OF (G(1))1X(G(1))1/(G(1))2 [J].
KEDEM, R ;
KLASSEN, TR ;
MCCOY, BM ;
MELZER, E .
PHYSICS LETTERS B, 1993, 304 (3-4) :263-270
[38]   FERMIONIC SUM REPRESENTATIONS FOR CONFORMAL FIELD-THEORY CHARACTERS [J].
KEDEM, R ;
KLASSEN, TR ;
MCCOY, BM ;
MELZER, E .
PHYSICS LETTERS B, 1993, 307 (1-2) :68-76
[39]  
Kedem R., 1995, Recent progress in statistical mechanics and quantum field theory, P195
[40]  
KEDEM R, 1993, J STAT PHYS, V71, P883