Polynomial identities, indices, and duality for the N=1 superconformal model SM(2,4v)

被引:30
作者
Berkovich, A [1 ]
McCoy, BM [1 ]
Orrick, WP [1 ]
机构
[1] SUNY STONY BROOK,INST THEORET PHYS,STONY BROOK,NY 11794
关键词
D O I
10.1007/BF02179546
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove polynomial identities for the N = 1 superconformal model SM(2, 4v) which generalize and extend the known Fermi/Bose character identities. Our proof uses the q-trinomial coefficients of Andrews and Baxter on the bosonic side and a recently introduced very general method of producing recursion relations for q-series on the Fermionic side. We use these polynomials to demonstrate a dual relation under q-->q(-1) between SM(2, 4v) and M(2v - 1, 4v). We also introduce a generalization of the Witten index which is expressible in terms of the Rogers false theta functions.
引用
收藏
页码:795 / 837
页数:43
相关论文
共 69 条
[1]  
Andrews G. E., 1976, The Theory of Partitions
[2]  
Andrews G.E., 1975, THEORY APPL SPECIAL
[3]  
Andrews G. E., 1994, CONT MATH, P141, DOI DOI 10.1090/C0NM/166/01622.MR1284057
[4]   8-VERTEX SOS MODEL AND GENERALIZED ROGERS-RAMANUJAN-TYPE IDENTITIES [J].
ANDREWS, GE ;
BAXTER, RJ ;
FORRESTER, PJ .
JOURNAL OF STATISTICAL PHYSICS, 1984, 35 (3-4) :193-266
[5]   LATTICE GAS GENERALIZATION OF THE HARD HEXAGON MODEL .3. Q-TRINOMIAL COEFFICIENTS [J].
ANDREWS, GE ;
BAXTER, RJ .
JOURNAL OF STATISTICAL PHYSICS, 1987, 47 (3-4) :297-330
[6]  
ANDREWS GE, 1979, PARTITIONS YESTERDAY
[7]  
ANDREWS GE, ROGERS RAMANUJAN POL
[8]  
Andrews GE., 1990, J AM MATH SOC, V3, P653
[9]  
[Anonymous], 1995, PROG THEOR PHYS SUPP, DOI 10.1143/PTPS.118.61
[10]  
BAVER E, FERMIONIC SUM REPRES