The Five-Electron Case of Thomson's Problem

被引:40
作者
Schwartz, Richard Evan [1 ]
机构
[1] Brown Univ, Dept Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
51-04; 51F99; 5-electron problem; power-law potential; triangular bi-pyramid; electron configurations; POINTS;
D O I
10.1080/10586458.2013.766570
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a rigorous computer-assisted proof that the triangular bipyramid is the unique configuration of five points on the sphere that globally minimizes the Coulomb (1/r) potential. We also prove the same result for the (1/r(2)) potential. The main mathematical contribution of the paper is a fairly efficient energy estimate that works for any number of points and any power-law potential.
引用
收藏
页码:157 / 186
页数:30
相关论文
共 12 条
[1]  
[Anonymous], ARXIV09060937V1CSDM
[2]  
[Anonymous], MATH TABLES OTHER AI
[3]  
[Anonymous], ARXIVMATH0611451V3
[4]   Universally optimal distribution of points on spheres [J].
Cohn, Henry ;
Kumar, Abhinav .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (01) :99-148
[5]   Discrete logarithmic energy on the sphere [J].
Dragnev, PD ;
Legg, DA ;
Townsend, DW .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (02) :345-358
[6]  
IEEE Computer Society, 1985, 7541985 IEEE
[7]  
IEEE Standard for Floating-Point Arithmetic, 2019, IEEE STD, P1
[8]  
Rakhmanov E. A., 1995, COMPUTATIONAL METHOD, P111
[9]   Distributing many points on a sphere [J].
Saff, E. B. ;
Kuijlaars, A. B. J. .
MATHEMATICAL INTELLIGENCER, 1997, 19 (01) :5-11