Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment

被引:146
作者
Kvitek, Daniel J. [1 ]
Sherlock, Gavin [1 ]
机构
[1] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
关键词
YEAST SACCHAROMYCES-CEREVISIAE; ESCHERICHIA-COLI POPULATIONS; LONG-TERM EXPERIMENT; BENEFICIAL MUTATIONS; ASEXUAL POPULATIONS; EXPERIMENTAL EVOLUTION; CLONAL INTERFERENCE; CELL-GROWTH; ADAPTATION; GLUCOSE;
D O I
10.1371/journal.pgen.1003972
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Molecular signaling networks are ubiquitous across life and likely evolved to allow organisms to sense and respond to environmental change in dynamic environments. Few examples exist regarding the dispensability of signaling networks, and it remains unclear whether they are an essential feature of a highly adapted biological system. Here, we show that signaling network function carries a fitness cost in yeast evolving in a constant environment. We performed whole-genome, whole-population Illumina sequencing on replicate evolution experiments and find the major theme of adaptive evolution in a constant environment is the disruption of signaling networks responsible for regulating the response to environmental perturbations. Over half of all identified mutations occurred in three major signaling networks that regulate growth control: glucose signaling, Ras/cAMP/PKA and HOG. This results in a loss of environmental sensitivity that is reproducible across experiments. However, adaptive clones show reduced viability under starvation conditions, demonstrating an evolutionary tradeoff. These mutations are beneficial in an environment with a constant and predictable nutrient supply, likely because they result in constitutive growth, but reduce fitness in an environment where nutrient supply is not constant. Our results are a clear example of the myopic nature of evolution: a loss of environmental sensitivity in a constant environment is adaptive in the short term, but maladaptive should the environment change.
引用
收藏
页数:11
相关论文
共 63 条
[1]   The genome sequence of Rickettsia prowazekii and the origin of mitochondria [J].
Andersson, SGE ;
Zomorodipour, A ;
Andersson, JO ;
Sicheritz-Pontén, T ;
Alsmark, UCM ;
Podowski, RM ;
Näslund, AK ;
Eriksson, AS ;
Winkler, HH ;
Kurland, CG .
NATURE, 1998, 396 (6707) :133-140
[2]  
[Anonymous], 1999, The genetical theory of natural selection: a complete variorum edition
[3]   Whole-genome sequencing of a laboratory-evolved yeast strain [J].
Araya, Carlos L. ;
Payen, Celia ;
Dunham, Maitreya J. ;
Fields, Stanley .
BMC GENOMICS, 2010, 11
[4]   Mutations of intermediate effect are responsible for adaptation in evolving Pseudomonas fluorescens populations [J].
Barrett, Rowan D. H. ;
MacLean, R. Craig ;
Bell, Graham .
BIOLOGY LETTERS, 2006, 2 (02) :236-238
[5]   Genome-wide Mutational Diversity in an Evolving Population of Escherichia coli [J].
Barrick, J. E. ;
Lenski, R. E. .
EVOLUTION: THE MOLECULAR LANDSCAPE, 2009, 74 :119-129
[6]   Genome evolution and adaptation in a long-term experiment with Escherichia coli [J].
Barrick, Jeffrey E. ;
Yu, Dong Su ;
Yoon, Sung Ho ;
Jeong, Haeyoung ;
Oh, Tae Kwang ;
Schneider, Dominique ;
Lenski, Richard E. ;
Kim, Jihyun F. .
NATURE, 2009, 461 (7268) :1243-U74
[7]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[8]   GO::TermFinder - open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes [J].
Boyle, EI ;
Weng, SA ;
Gollub, J ;
Jin, H ;
Botstein, D ;
Cherry, JM ;
Sherlock, G .
BIOINFORMATICS, 2004, 20 (18) :3710-3715
[9]   POSITIONING OF CELL-GROWTH AND DIVISION AFTER OSMOTIC-STRESS REQUIRES A MAP KINASE PATHWAY [J].
BREWSTER, JL ;
GUSTIN, MC .
YEAST, 1994, 10 (04) :425-439
[10]  
Cameroni E, 2004, CELL CYCLE, V3, P462