From 3D to 4D printing: approaches and typical applications

被引:142
|
作者
Zhou, Ye [1 ]
Huang, Wei Min [1 ]
Kang, Shu Feng [2 ]
Wu, Xue Lian [3 ]
Lu, Hai Bao [4 ]
Fu, Jun [5 ]
Cui, Haipo [6 ,7 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, Singapore 639798, Singapore
[2] Shenzhen Woer Heat Shrinkable Mat Co Ltd, Shenzhen 518118, Peoples R China
[3] Jiangsu Univ, Sch Mech Engn, Zhenjiang 212013, Peoples R China
[4] Harbin Inst Technol, Sci & Technol Adv Composites Special Environm Lab, Harbin 150080, Peoples R China
[5] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Polymer & Composites Div, Ningbo 315201, Zhejiang, Peoples R China
[6] Shanghai Univ Sci & Technol, Shanghai Inst Minimally Invas Therapy, Shanghai 200093, Peoples R China
[7] Jiangsu Prov Key Lab Aerosp Power Syst, Nanjing 210016, Jiangsu, Peoples R China
关键词
3D printing; 4D printing; Bi-stability; Deformation mismatch; Product design; Self-assembly; Shape memory effect; SHAPE-MEMORY TECHNOLOGY; PROGRAMMABLE MATERIALS; COMPLIANT MECHANISMS; FUNDAMENTALS; FABRICATION; DEPLOYMENT; HYDROGEL; DESIGN;
D O I
10.1007/s12206-015-0925-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
With the additional dimension, 4D printing is emerging as a novel technique to enable configuration switching in 3D printed items. In this paper, four major approaches, namely self-assembly of elements, deformation mismatch, bi-stability, and the Shape memory effect (SME), are identified as the generic approaches to achieve 4D printing. The main features of these approaches are briefly discussed. Utilizing these approaches either individually or in a combined manner, the potential of 4D printing to reshape product design is demonstrated by a few example applications.
引用
收藏
页码:4281 / 4288
页数:8
相关论文
共 50 条
  • [21] Exploring the potential of 3D and 4D printing in advancing stent manufacturing for cardiovascular diseases
    Hatami, Hooman
    Almahmeed, Wael
    Kesharwani, Prashant
    Sahebkar, Amirhossein
    EUROPEAN POLYMER JOURNAL, 2024, 212
  • [22] Machine Learning in 3D and 4D Printing of Polymer Composites: A Review
    Malashin, Ivan
    Masich, Igor
    Tynchenko, Vadim
    Gantimurov, Andrei
    Nelyub, Vladimir
    Borodulin, Aleksei
    Martysyuk, Dmitry
    Galinovsky, Andrey
    POLYMERS, 2024, 16 (22)
  • [23] 3D/4D Printing of Polyurethanes by Vat Photopolymerization
    Mauriello, Jessica
    Maury, Romain
    Guillaneuf, Yohann
    Gigmes, Didier
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (23)
  • [24] Translational Aspects of 3D and 4D Printing and Bioprinting
    Taylor, Scott
    Mueller, Eva
    Jones, Lamont R.
    Makela, Ashley V.
    Ashammakhi, Nureddin
    ADVANCED HEALTHCARE MATERIALS, 2024, 13 (27)
  • [25] Fundamentals and applications of 3D printing for novel materials
    Lee, Jian-Yuan
    An, Jia
    Chua, Chee Kai
    APPLIED MATERIALS TODAY, 2017, 7 : 120 - 133
  • [26] Personalized solutions for ENT implants: The role of 3D/4D printing
    Vyas, Jigar
    Raytthatha, Nensi
    Vyas, Puja
    Patel, Jitendra
    BRAZILIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2025, 61
  • [27] The Applications of 3D Printing for Craniofacial Tissue Engineering
    Tao, Owen
    Kort-Mascort, Jacqueline
    Lin, Yi
    Pham, Hieu M.
    Charbonneau, Andre M.
    ElKashty, Osama A.
    Kinsella, Joseph M.
    Tran, Simon D.
    MICROMACHINES, 2019, 10 (07)
  • [28] Functional applications of 4D printing: A review
    Mohol, Shubham Shankar
    Sharma, Varun
    RAPID PROTOTYPING JOURNAL, 2021, 27 (08) : 1501 - 1522
  • [29] Advances in 4D Printing: Materials and Applications
    Kuang, Xiao
    Roach, Devin J.
    Wu, Jiangtao
    Hamel, Craig M.
    Ding, Zhen
    Wang, Tiejun
    Dunn, Martin L.
    Qi, Hang Jerry
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (02)
  • [30] Artificial Intelligence-Empowered 3D and 4D Printing Technologies toward Smarter Biomedical Materials and Approaches
    Pugliese, Raffaele
    Regondi, Stefano
    POLYMERS, 2022, 14 (14)