Quantum and classical confinement of resonant states in a trilayer graphene Fabry-Perot interferometer

被引:50
作者
Campos, L. C. [1 ]
Young, A. F. [1 ]
Surakitbovorn, K. [1 ]
Watanabe, K. [2 ]
Taniguchi, T. [2 ]
Jarillo-Herrero, P. [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
[2] Natl Inst Mat Sci, Adv Mat Lab, Tsukuba, Ibaraki 3050044, Japan
来源
NATURE COMMUNICATIONS | 2012年 / 3卷
基金
美国国家科学基金会;
关键词
CARBON NANOTUBES; SCATTERING; TRANSPORT;
D O I
10.1038/ncomms2243
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The advent of few-layer graphene has given rise to a new family of two-dimensional systems with emergent electronic properties governed by relativistic quantum mechanics. The multiple carbon sublattices endow the electronic wavefunctions with pseudospin, a lattice analogue of the relativistic electron spin, whereas the multilayer structure leads to electric-field-effect tunable electronic bands. Here we use these properties to realize giant conductance oscillations in ballistic trilayer graphene Fabry-Perot interferometers, which result from phase coherent transport through resonant bound states beneath an electrostatic barrier. We confine these states by selectively decoupling them from the leads, resulting in transport via non-resonant states and suppression of the giant oscillations. The confinement is achieved both classically, by manipulating quasiparticle momenta with a magnetic field, and quantum mechanically, by locally varying the pseudospin character of the carrier wavefunctions. Our results illustrate the unique potential of trilayer graphene as a versatile platform for electron optics and pseudospintronics.
引用
收藏
页数:6
相关论文
共 30 条
  • [1] Klein tunneling in graphene: optics with massless electrons
    Allain, P. E.
    Fuchs, J. N.
    [J]. EUROPEAN PHYSICAL JOURNAL B, 2011, 83 (03) : 301 - 317
  • [2] Impurity scattering in carbon nanotubes - Absence of back scattering
    Ando, T
    Nakanishi, T
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (05) : 1704 - 1713
  • [3] Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/nphys2103, 10.1038/NPHYS2103]
  • [4] Temperature-dependent transport in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Hone, J.
    Stormer, H. L.
    Kim, P.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (09)
  • [5] The electronic properties of graphene
    Castro Neto, A. H.
    Guinea, F.
    Peres, N. M. R.
    Novoselov, K. S.
    Geim, A. K.
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (01) : 109 - 162
  • [6] Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene
    Cheianov, Vadim V.
    Fal'ko, Vladimir I.
    [J]. PHYSICAL REVIEW B, 2006, 74 (04):
  • [7] The focusing of electron flow and a Veselago lens in graphene p-n junctions
    Cheianov, Vadim V.
    Fal'ko, Vladimir
    Altshuler, B. L.
    [J]. SCIENCE, 2007, 315 (5816) : 1252 - 1255
  • [8] Fully valley-polarized electron beams in graphene
    Garcia-Pomar, J. L.
    Cortijo, A.
    Nieto-Vesperinas, M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (23)
  • [9] Chirality-Assisted Electronic Cloaking of Confined States in Bilayer Graphene
    Gu, Nan
    Rudner, Mark
    Levitov, Leonid
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (15)
  • [10] Collapse of Landau Levels in Gated Graphene Structures
    Gu, Nan
    Rudner, Mark
    Young, Andrea
    Kim, Philip
    Levitov, Leonid
    [J]. PHYSICAL REVIEW LETTERS, 2011, 106 (06)