Abhyankar places admit local uniformization in any characteristic

被引:44
作者
Knaf, H
Kuhlmann, FV
机构
[1] Fraunhofer Inst Techno & Wirtschaftsmath, Abt Adapt Syst, D-67663 Kaiserslautern, Germany
[2] Univ Saskatchewan, Math Sci Grp, Saskatoon, SK S7N 5E6, Canada
来源
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE | 2005年 / 38卷 / 06期
关键词
D O I
10.1016/j.ansens.2005.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that every place P of an algebraic function field F vertical bar K of arbitrary characteristic admits local uniformization, provided that the sum of the rational rank of its value group and the transcendence degree of its residue field FP over K is equal to the transcendence degree of F vertical bar K, and the extension FP vertical bar K is separable. We generalize this result to the case where P dominates a regular local Nagata ring R subset of K of Krull dimension dim R <= 2, assuming that the valued field (K, upsilon(P)) is defectless, the factor group v(P)F/upsilon K-P is torsion-free and the extension of residue fields FP vertical bar KP is separable. The results also include a form of monomialization. (c) 2005 Published by Elsevier SAS.
引用
收藏
页码:833 / 846
页数:14
相关论文
共 22 条
[2]  
ABHYANKAR S, 1966, WISSENSCHAFTLICHE AB, V33, P243
[3]  
Abhyankar S, 1966, ANN MAT PUR APPL, V71, P25
[4]  
Abhyankar S. S., 1966, Resolution of singularities of embedded algebraic surfaces
[5]  
ABHYANKAR SS, 1965, RESOLUTION SINGULARI
[6]  
ABHYANKAR SS, 1965, MATH ANN, V159, P1
[7]  
[Anonymous], PUBL MATH DEC
[8]  
[Anonymous], 1964, THEORIE VALUATIONS
[9]  
Bourbaki N., 1972, COMMUTATIVE ALGEBRA
[10]  
Elliott G.A., 1979, Lecture Notes in Math., V734, P1