Lambda-doublet specificity in the low-temperature capture of NO(X 2Π1/2) in low rotational states by C+ ions

被引:6
|
作者
Auzinsh, M. [1 ]
Dashevskaya, E. I. [2 ,3 ]
Litvin, I. [2 ,3 ]
Nikitin, E. E. [2 ,3 ]
Troe, J. [3 ,4 ]
机构
[1] Latvian State Univ, Dept Phys, LV-1586 Riga, Latvia
[2] Technion Israel Inst Technol, Schulich Fac Chem, IL-32000 Haifa, Israel
[3] Max Planck Inst Biophys Chem, D-37077 Gottingen, Germany
[4] Univ Gottingen, Inst Phys Chem, D-37077 Gottingen, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2009年 / 130卷 / 01期
关键词
carbon; electron capture; hyperfine structure; nitrogen compounds; positive ions; reaction rate constants; rotational states; Stark effect; DIPOLAR MOLECULES; CHANNEL TREATMENT; REACTION-RATES; NITRIC-OXIDE; LOW-ENERGY; SPECTRUM; COLLISIONS; BAND;
D O I
10.1063/1.3043365
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Following our general approach to Lambda-doubling specificity in the capture of dipolar molecules by ions [M. Auzinsh , J. Chem. Phys. 128, 184304 (2008)], we calculate the rate coefficients for the title process in the temperature range 10(-4)< T < 10(2) K. Three regimes considered are as follows: (i) nonadiabatic capture in the regime of high-field Stark effect with respect to the Lambda-doubling components, (10(-1)< T < 10(2) K), (ii) adiabatic capture in the regime of intermediate Stark effect (10(-3)< T < 10(-1) K), and (iii) adiabatic capture in the limit of very low temperatures (T < 10(-3) K) in the regime of quadratic Stark effect with respect to the Lambda-doubling and hyperfine components. The results predict a high specificity of the capture rates with respect to the Lambda-doublet states even under conditions when the collision energy of the partners strongly exceeds the Lambda-doubling splitting.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] CO2 Capture and Low-Temperature Release by Poly(aminoethyl methacrylate) and Derivatives
    Tiainen, Tony
    Mannisto, Jere K.
    Tenhu, Heikki
    Hietala, Sami
    LANGMUIR, 2022, 38 (17) : 5197 - 5208
  • [42] Tetraethylenepentamine-Modified Silica Nanotubes for Low-Temperature CO2 Capture
    Yao, Manli
    Dong, Yanyan
    Hu, Xin
    Feng, Xingxing
    Jia, Aiping
    Xie, Guanqun
    Hu, Gengshen
    Lu, Jiqing
    Luo, Mengfei
    Fan, Maohong
    ENERGY & FUELS, 2013, 27 (12) : 7673 - 7680
  • [43] Mathematical modelling of low-temperature hydrogen production with in situ CO2 capture
    Koumpouras, Georgios C.
    Alpay, Esat
    Stepanek, Frantisek
    CHEMICAL ENGINEERING SCIENCE, 2007, 62 (10) : 2833 - 2841
  • [44] CO2 Capture from IGCC by Low-Temperature Synthesis Gas Separation
    Berstad, David
    Skaugen, Geir
    Roussanaly, Simon
    Anantharaman, Rahul
    Neksa, Petter
    Jordal, Kristin
    Traedal, Stian
    Gundersen, Truls
    ENERGIES, 2022, 15 (02)
  • [45] Structure of low-temperature phase of C2F6
    Klymenko, N.A.
    Galtsov, N.N.
    Prokhvatilov, A.I.
    Fizika Nizkikh Temperatur (Kharkov), 2010, 36 (02): : 238 - 246
  • [46] Low-Temperature Surface Photochemistry of π-bonded Ethylene on Si(100)c(4x2)
    Umeyama, Hirobumi
    Katayama, Tetsuo
    Mukai, Kozo
    Yamashita, Yoshiyuki
    Yoshinobu, Jun
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2009, 48 (08)
  • [47] Low temperature states in the beta-CeH2+x phase
    Ratishvili, IG
    Vajda, P
    Namoradze, NZ
    JOURNAL OF ALLOYS AND COMPOUNDS, 1995, 231 (1-2) : 115 - 120
  • [48] LOW-TEMPERATURE TRANSPORT MEASUREMENTS ON (TMTSF)2C104
    CHOI, MY
    CHAIKIN, PM
    GREENE, RL
    JOURNAL DE PHYSIQUE, 1983, 44 (NC-3): : 1067 - 1070
  • [49] Low-Temperature Desorption of N2O from NO on Rutile TiO2(110)-1 x 1
    Kim, Boseong
    Li, Zhenjun
    Kay, Bruce D.
    Dohnalek, Zdenek
    Kim, Yu Kwon
    JOURNAL OF PHYSICAL CHEMISTRY C, 2014, 118 (18): : 9544 - 9550
  • [50] GENERATION OF SIO2 INTERFACE STATES AT LOW-TEMPERATURE WITH IONIZING IRRADIATION
    BLUZER, N
    AFFINITO, D
    BLAHA, FC
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1981, 28 (06) : 4074 - 4079