Periodic boundary value problem for non-Lipschitzian impulsive functional differential equations

被引:102
作者
Nieto, JJ [1 ]
Rodríguez-López, R [1 ]
机构
[1] Univ Santiago de Compostela, Fac Matemat, Dept Anal Matemat, Santiago De Compostela 15782, Spain
关键词
impulsive functional differential equation; periodic boundary value problem; maximum principle; lower and upper solutions; monotone method;
D O I
10.1016/j.jmaa.2005.06.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a class of first-order impulsive functional differential equations, where the functional dependence is not necessarily a Lipschitzian function. The new maximum principle improves and extends previous results and uniqueness of solution between a lower and an upper solution for a particular nonlinear problem is presented. We give conditions for existence of extremal solutions in an interval delimited by a lower and an upper solution. (c) 2005 Elsevier Inc. All fights reserved.
引用
收藏
页码:593 / 610
页数:18
相关论文
共 24 条
[1]  
Agarwal R. P., 1993, Uniqueness and nonuniqueness criteria for ordinary differential equations
[2]   An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-Lipschitzian adsorption kinetics [J].
Barrett, JW ;
Knabner, P .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (05) :1862-1882
[3]  
CORTAZAR C, 1996, ADV DIFF EQUATIONS, V1, P199
[4]  
Franco D, 2000, MATH NACHR, V218, P49, DOI 10.1002/1522-2616(200010)218:1<49::AID-MANA49>3.0.CO
[5]  
2-6
[6]   Asymptotically stable walking for biped robots: Analysis via systems with impulse effects [J].
Grizzle, JW ;
Abba, G ;
Plestan, F .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2001, 46 (01) :51-64
[7]  
He XM, 2002, INDIAN J PURE AP MAT, V33, P1257
[8]   Periodic boundary value problem for first-order impulsive functional differential equations [J].
He, ZM ;
Yu, JS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 138 (02) :205-217
[10]  
Ladde GS., 1985, MONOTONE ITERATIVE T