Statistical methodological issues in mapping historical schistosomiasis survey data

被引:24
作者
Chammartin, Frederique [1 ,2 ]
Huerlimann, Eveline [1 ,2 ]
Raso, Giovanna [1 ,2 ,3 ]
N'Goran, Eliezer K. [3 ,4 ]
Utzinger, Juerg [1 ,2 ]
Vounatsou, Penelope [1 ,2 ]
机构
[1] Swiss Trop & Publ Hlth Inst, Dept Epidemiol & Publ Hlth, CH-4002 Basel, Switzerland
[2] Univ Basel, CH-4003 Basel, Switzerland
[3] Ctr Suisse Rech Sci Cote Ivoire, Abidjan 01, Cote Ivoire
[4] Univ Felix Houphouet Boigny, Unite Format & Rech Biosci, Abidjan 22, Cote Ivoire
基金
瑞士国家科学基金会;
关键词
Schistosomiasis; Mapping; Bayesian geostatistics; Geostatistical variable selection; Block of covariates; Cote d'Ivoire; SPATIAL RISK PREDICTION; AGE-SPECIFIC PREVALENCE; VARIABLE SELECTION; MALARIA RISK; MODEL; MANSONI; PATTERNS; EPIDEMIOLOGY; INFECTION; AFRICA;
D O I
10.1016/j.actatropica.2013.04.012
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
For schistosomiasis and other neglected tropical diseases for which resources for control are still limited, model-based maps are needed for prioritising spatial targeting of control interventions and surveillance of control programmes. Bayesian geostatistical modelling has been widely and effectively used to generate smooth empirical risk maps. In this paper, we review important issues related to the modelling of schistosomiasis risk, including Bayesian computation of large datasets, heterogeneity of historical survey data, stationary and isotropy assumptions and novel approaches for Bayesian geostatistical variable selection. We provide an example of advanced Bayesian geostatistical variable selection based on historical prevalence data of Schistosoma mansoni in Cote d'Ivoire. We include a "parameter expanded normal mixture of inverse-gamma" prior for the regression coefficients, which in turn allows selection of blocks of covariates, particularly categorical variables. The implemented Bayesian geostatistical variable selection provided a rigorous approach for the selection of predictors within a Bayesian geostatistical framework, identified the most important predictors of S. mansoni infection risk and led to a more parsimonious model compared to traditional selection approaches that ignore the spatial structure in the data. In conclusion, statistical advances in Bayesian geostatistical modelling offer unique opportunities to account for important inherent characteristics of the Schistosoma infection, and hence Bayesian geostatistical models can guide the spatial targeting of control interventions. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:345 / 352
页数:8
相关论文
共 66 条
  • [41] Montresor A., 1998, WHOCDSSIP981, P45
  • [42] A Review of Bayesian Variable Selection Methods: What, How and Which
    O'Hara, R. B.
    Sillanpaa, M. J.
    [J]. BAYESIAN ANALYSIS, 2009, 4 (01): : 85 - 117
  • [43] Spatial parasite ecology and epidemiology: a review of methods and applications
    Pullan, Rachel L.
    Sturrock, Hugh J. W.
    Magalhaes, Ricardo J. Soares
    Clements, Archie C. A.
    Brooker, Simon J.
    [J]. PARASITOLOGY, 2012, 139 (14) : 1870 - 1887
  • [44] Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Cote d' Ivoire
    Raso, G
    Vounatsou, P
    Gosoniu, L
    Tanner, M
    N'Goran, EK
    Utzinger, J
    [J]. INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2006, 36 (02) : 201 - 210
  • [45] Spatial risk prediction and mapping of Schistosoma mansoni infections among schoolchildren living in western Cote d'Ivoire
    Raso, G
    Matthys, B
    N'Goran, EK
    Tanner, M
    Vounatsou, P
    Utzinger, J
    [J]. PARASITOLOGY, 2005, 131 : 97 - 108
  • [46] A Bayesian approach to estimate the age-specific prevalence of Schistosoma mansoni and implications for schistosomiasis control
    Raso, Giovanna
    Vounatsou, Penelope
    McManus, Donald P.
    N'Goran, Eliezer K.
    Utzinger, Juerg
    [J]. INTERNATIONAL JOURNAL FOR PARASITOLOGY, 2007, 37 (13) : 1491 - 1500
  • [47] Geographical patterns and predictors of malaria risk in Zambia: Bayesian geostatistical modelling of the 2006 Zambia national malaria indicator survey (ZMIS)
    Riedel, Nadine
    Vounatsou, Penelope
    Miller, John M.
    Gosoniu, Laura
    Chizema-Kawesha, Elizabeth
    Mukonka, Victor
    Steketee, Rick W.
    [J]. MALARIA JOURNAL, 2010, 9
  • [48] Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations
    Rue, Havard
    Martino, Sara
    Chopin, Nicolas
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2009, 71 : 319 - 392
  • [49] Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
    Scheipl, Fabian
    Fahrmeir, Ludwig
    Kneib, Thomas
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1518 - 1532
  • [50] Schur N., 2011, THESIS U BASEL