In Situ Neutron Powder Diffraction of Li6C60 for Hydrogen Storage

被引:24
作者
Gaboardi, Mattia [1 ]
Duyker, Samuel [2 ,3 ]
Milanese, Chiara [4 ]
Magnani, Giacomo [1 ]
Peterson, Vanessa K. [2 ]
Pontiroli, Daniele [1 ]
Sharma, Neeraj [5 ]
Ricco, Mauro [1 ]
机构
[1] Univ Parma, Dept Phys & Earth Sci, I-43124 Parma, Italy
[2] Australian Nucl Sci & Technol Org, Kirrawee Dc, NSW 2232, Australia
[3] Univ Sydney, Sch Chem, Sydney, NSW 2006, Australia
[4] Univ Pavia, Dept Chem, Lab H2, I-27100 Pavia, Italy
[5] Univ New S Wales, Sch Chem, Sydney, NSW 2052, Australia
关键词
PHASE-CHANGE; KINETICS; TRANSITION; MECHANISM; CLUSTERS; DYNAMICS; LI12C60; LI;
D O I
10.1021/acs.jpcc.5b06711
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Li6C60 is so far the best performing fullerene-based hydrogen-storage material. The mechanism of its reversible hydrogen absorption is not, however, totally known. Here, we report the thermal evolution of Li6C60 upon deuterium absorption up to 330 degrees C and under 60 bar deuterium gas pressure using in situ high-intensity neutron powder diffraction. The temporal resolution of the collected data allowed the hydrogenation of Li6C60 and the segregation of lithium hydride (here LiD) processes to be distinguished from a mechanistic point of view. During absorption, Li6C60 undergoes several phase transitions, involving the partial segregation of Li in the form of hydride and the expansion of the face-centered cubic (fcc) lattice, followed by a body-centered cubic (bcc) rearrangement of the deuterated fullerenes. The amount of absorbed deuterium was determined by the analysis of the variation in the scattered neutron intensity and confirmed by an ex situ desorption measurement. This analysis clarifies the complex physicochemical reactions behind the absorption mechanism of this model material and highlights the importance of intercalated lithium in triggering the hydrogenation process.
引用
收藏
页码:19715 / 19721
页数:7
相关论文
共 25 条
[1]   Muon spin relaxation reveals the hydrogen storage mechanism in light alkali metal fullerides [J].
Aramini, M. ;
Gaboardi, M. ;
Vlahopoulou, G. ;
Pontiroli, D. ;
Cavallari, C. ;
Milanese, C. ;
Ricco, M. .
CARBON, 2014, 67 :92-97
[2]   Addition of transition metals to lithium intercalated fullerides enhances hydrogen storage properties [J].
Aramini, Matteo ;
Milanese, Chiara ;
Pontiroli, Daniele ;
Gaboardi, Mattia ;
Girella, Alessandro ;
Bertoni, Giovanni ;
Ricco, Mauro .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (05) :2124-2131
[3]   Temperature-induced valence transition and associated lattice collapse in samarium fulleride [J].
Arvanitidis, J ;
Papagelis, K ;
Margadonna, S ;
Prassides, K ;
Fitch, AN .
NATURE, 2003, 425 (6958) :599-602
[4]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[5]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[6]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI DOI 10.1063/1.1750631
[7]   STRUCTURE OF C-60 - PARTIAL ORIENTATIONAL ORDER IN THE ROOM-TEMPERATURE MODIFICATION OF C-60 [J].
BURGI, HB ;
RESTORI, R ;
SCHWARZENBACH, D .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 1993, 49 :832-838
[8]  
Cataldo F, 2010, CARBON MATER-CHEM PH, V2, P1, DOI 10.1007/978-1-4020-9887-1
[9]  
Christian J., 2002, The Theory of Transformations in Metals and Alloys
[10]   Hydrogen storage mechanism and lithium dynamics in Li12C60 investigated by μSR [J].
Gaboardi, Mattia ;
Cavallari, Chiara ;
Magnani, Giacomo ;
Pontiroli, Daniele ;
Rols, Stephane ;
Ricco, Mauro .
CARBON, 2015, 90 :130-137