Pore-scale flow simulation in anisotropic porous material via fluid-structure coupling

被引:1
作者
Li, Chen [1 ]
Wang, Changbo [1 ]
Zhang, Shenfan [1 ]
Qiu, Sheng [1 ]
Qin, Hong [2 ]
机构
[1] East China Normal Univ, Sch Comp Sci & Software Engn, Shanghai, Peoples R China
[2] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
Anisotropic porous material; Particle finite element method; Fluid-structure coupling; Realistic simulation; SMOOTHED PARTICLE HYDRODYNAMICS; FINITE-ELEMENT-METHOD; DYNAMICS; MODELS; MEDIA;
D O I
10.1016/j.gmod.2017.12.001
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes a novel hybrid method for fluid simulation of saturating anisotropic porous material via fluid-structure coupling. Our framework employs particle finite element method (PFEM) that not only adopts Lagrangian scheme to model the motion of freely-moving particles, but also produces the extended Delaunay Tessellation to furnish the governing equations with FEM discretization. We first employ adaptive smoothed particle hydrodynamics (SPH) to simulate porous flow respecting the anisotropic permeability with little cost. Second, the extended Delaunay Tessellation is obtained to solve differential equations for skeletal deformation. Third, a hybrid particle system is adopted to track the surface and topological changes. At the physical level, we introduce dynamic permeability considering skeletal deformation via fluid-structure coupling. At the geometric level, PFEM reduces the computational cost and effectively tracks topological changes. Moreover, our implementation on CUDA improves the performance in high-quality physics-based graphics applications. Consequently, the proposed method realistically reproduces interactions between pore-scale flow and anisotropic porous material.
引用
收藏
页码:14 / 26
页数:13
相关论文
共 50 条
  • [21] Effect of hydrate on permeability in porous media: Pore-scale micro-simulation
    Hou, Jian
    Ji, Yunkai
    Zhou, Kang
    Liu, Yongge
    Wei, Bei
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 : 416 - 424
  • [22] Pore-scale simulation of viscous instability for non-Newtonian two-phase flow in porous media
    Shende, Takshak
    Niasar, Vahid
    Babaei, Masoud
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2021, 296
  • [23] Pore-scale simulation of remaining oil distribution in 3D porous media affected by wettability and capillarity based on volume of fluid method
    Yang, Yongfei
    Cai, Shaobin
    Yao, Jun
    Zhong, Junjie
    Zhang, Kai
    Song, Wenhui
    Zhang, Lei
    Sun, Hai
    Lisitsa, Vadim
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2021, 143
  • [24] Pore-Scale Coupling of Flow, Biofilm Growth, and Nutrient Transport: A Microcontinuum Approach
    Dawi, Malik A.
    Starnoni, Michele
    Porta, Giovanni
    Sanchez-Vila, Xavier
    WATER RESOURCES RESEARCH, 2024, 60 (11)
  • [25] Multiscale computation of pore-scale fluid dynamics: Single-phase flow
    Mehmani, Yashar
    Tchelepi, Hamdi A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 375 : 1469 - 1487
  • [26] Fluid-structure interaction simulation of aortic blood flow
    Crosetto, Paolo
    Reymond, Philippe
    Deparis, Simone
    Kontaxakis, Dimitrios
    Stergiopulos, Nikolaos
    Quarteroni, Alfio
    COMPUTERS & FLUIDS, 2011, 43 (01) : 46 - 57
  • [27] Pore-scale velocities in three-dimensional porous materials with trapped immiscible fluid
    Guedon, Gael Raymond
    Inzoli, Fabio
    Riva, Monica
    Guadagnini, Alberto
    PHYSICAL REVIEW E, 2019, 100 (04)
  • [28] Numerical Investigation of Fluid Flow Instabilities in Pore-scale with Heterogeneities in Permeability and Wettability
    Shiri, Yousef
    Shiri, Alireza
    RUDARSKO-GEOLOSKO-NAFTNI ZBORNIK, 2021, 36 (03): : 143 - 156
  • [29] Study on the effect of pore-scale heterogeneity and flow rate during repetitive two-phase fluid flow in microfluidic porous media
    Zhang, Jingtao
    Zhang, Haipeng
    Lee, Donghee
    Ryu, Sangjin
    Kim, Seunghee
    PETROLEUM GEOSCIENCE, 2021, 27 (02)
  • [30] Effects of microfracture parameters on adaptive pumping in fractured porous media: Pore-scale simulation
    Liang, Fachun
    He, Zhennan
    Meng, Jia
    Zhao, Jingwen
    Yu, Chao
    ENERGY, 2023, 263