On the boundedness of a class of sublinear operators

被引:8
作者
Prokhorov, D. V. [1 ]
机构
[1] Russian Acad Sci, Far E Branch, Computat Ctr, Khabarovsk 680000, Russia
基金
俄罗斯科学基金会;
关键词
HARDY-TYPE OPERATOR; INTEGRAL-OPERATORS; MONOTONE-FUNCTIONS; LEBESGUE SPACES; INEQUALITIES; CONE;
D O I
10.1134/S1064562415050294
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Boundedness criteria in weighted Lebesgue spaces for a class of sublinear integral operators are obtained.
引用
收藏
页码:602 / 605
页数:4
相关论文
共 14 条
[1]   NECESSARY AND SUFFICIENT CONDITIONS FOR BOUNDEDNESS OF THE HARDY-TYPE OPERATOR FROM A WEIGHTED LEBESGUE SPACE TO A MORREY-TYPE SPACE [J].
Burenkov, V. I. ;
Oinarov, R. .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (01) :1-19
[2]   Reduction theorems for weighted integral inequalities on the cone of monotone functions [J].
Gogatishvili, A. ;
Stepanov, V. D. .
RUSSIAN MATHEMATICAL SURVEYS, 2013, 68 (04) :597-664
[3]  
OINAROV R, 1991, DOKL AKAD NAUK SSSR+, V319, P1076
[4]  
Persson L. E., 2015, J BANACH MATH ANAL, V9, P21
[5]   Estimates for a class of sublinear integral operators [J].
Prokhorov, D. V. ;
Stepanov, V. D. .
DOKLADY MATHEMATICS, 2014, 89 (03) :372-377
[6]   On a weighted inequality for a Hardy-type operator [J].
Prokhorov, D. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 (01) :208-215
[7]   On weighted Hardy inequalities in mixed norms [J].
Prokhorov, D. V. ;
Stepanov, V. D. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 (01) :149-164
[8]   Boundedness and compactness of a supremum-involving integral operator [J].
Prokhorov, D. V. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2013, 283 (01) :136-148
[9]   Weighted estimates for a class of sublinear operators [J].
Prokhorov, D. V. ;
Stepanov, V. D. .
DOKLADY MATHEMATICS, 2013, 88 (03) :721-723
[10]   On a weighted hardy-type inequality [J].
Prokhorov, D. V. .
DOKLADY MATHEMATICS, 2013, 88 (03) :687-689