Spacelike hypersurfaces with constant higher order mean curvature in Minkowski space-time

被引:11
作者
Alías, LJ [1 ]
Malacarne, JM
机构
[1] Univ Murcia, Dept Matemat, E-30100 Murcia, Spain
[2] Univ Fed Espirito Santo, Dept Matemat, BR-29060900 Vitoria, ES, Brazil
关键词
Minkowski space-time; spacelike hypersurfaces; higher order mean curvature; flux formula; hyperbolic caps;
D O I
10.1016/S0393-0440(01)00069-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop a series of general integral formulae for compact spacelike hyper-surfaces with hyperplanar boundary in the (n + I)-dimensional Minkowski space-time Ln+1. As an application of them, we prove that the only compact spacelike hypersurfaces in Ln+1 having constant higher order mean curvature and spherical boundary are the hyperplanar balls (with zero higher order mean curvature) and the hyperbolic caps (with nonzero constant higher order mean curvature). This extends previous results obtained by the first author, jointly with Pastor, for the case of constant mean curvature [J. Geom. Phys. 28 (1998) 85] and the case of constant scalar curvature [Ann. Global Anal. Geom. 18 (2000) 75]. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:359 / 375
页数:17
相关论文
共 21 条
[1]  
Aiyama R., 1992, TSUKUBA J MATH, V16, P353
[2]   Integral formulas for compact space-like hypersurfaces in de Sitter space:: Applications to the case of constant higher order mean curvature [J].
Aledo, JA ;
Alías, LJ ;
Romero, A .
JOURNAL OF GEOMETRY AND PHYSICS, 1999, 31 (2-3) :195-208
[3]   Constant mean curvature spacelike hypersurfaces with spherical boundary in the Lorentz-Minkowski space [J].
Alias, LJ ;
Pastor, JA .
JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) :85-93
[4]   Compact spacelike surfaces with constant mean curvature in the Lorentz-Minkowski 3-space [J].
Alías, LJ ;
López, R ;
Pastor, JA .
TOHOKU MATHEMATICAL JOURNAL, 1998, 50 (04) :491-501
[5]   Spacelike hypersurfaces with constant scalar curvature in the Lorentz-Minkowski space [J].
Alías, LJ ;
Pastor, JA .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2000, 18 (01) :75-83
[6]  
ALIAS LJ, 2000, CONSTANT HIGHER ORDE
[7]   Geometric inequalities for spacelike hypersurfaces in the Minkowski spacetime [J].
Bahn, H ;
Hong, SP .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (1-2) :94-99
[8]   EXISTENCE OF MAXIMAL SURFACES IN ASYMPTOTICALLY FLAT SPACETIMES [J].
BARTNIK, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (02) :155-175
[9]  
BECKENBACH E, 1971, INEQUALITIES
[10]  
Calabi E., 1970, Proc Symp Pure Appl Math, V15, P223, DOI [10.1090/pspum/015/0264210, DOI 10.1090/PSPUM/015/0264210]