Electrochromism of hexagonal sodium tungsten bronze nanorods

被引:17
|
作者
Gao, Tao [1 ]
Jelle, Bjorn Petter [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Civil & Environm Engn, N-7491 Trondheim, Norway
[2] SINTEF Bldg & Infrastruct, Dept Mat & Struct, N-7465 Trondheim, Norway
关键词
Sodium tungsten bronze; Nanorod; Tunnel structure; Electrochromism; FTIR; SMART WINDOWS; WO3; NANORODS; NANOMATERIALS; COATINGS; TRIOXIDE; QUALITY;
D O I
10.1016/j.solmat.2017.11.025
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Single-crystalline sodium tungsten bronze (Na-WO3) nanorods with typical diameters of 10-200 run and lengths of several microns have been prepared via a simple hydrothermal method. The as-prepared Na-WO3 nanorods crystallize in a hexagonal structure and elongate along the < 001 > crystallographic direction. The as-prepared Na-WO3 nanorods have eight diagnostic Fourier transform infrared (FTIR) absorptions at 3604, 3545, 1622, 1600, 983, 790, 480 and 430 cm(-1), which represent specific fingerprints of the vibrational features of hexagonally tunnel-structured Na-WO3 containing tunnel water molecules. The as-prepared Na-WO3 nanorods exhibit a typical cathodic electrochromism, which is related to a proton-electron double insertion process. X-ray diffraction results indicate a phase transformation of hexagonal Na-WO3 nanorods during the electrochromic process, of which the involved local structural evolutions such as water decomposition and proton insertion have been discussed by using FUR spectroscopy. The results suggest that, during the electrochromic coloration process, the inserted protons might occupy the small trigonal tunnel positions instead of the large hexagonal ones.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 50 条
  • [31] MICROSCOPIC INHOMOGENEITY IN SODIUM TUNGSTEN BRONZE - COMMENT
    TUNSTALL, DP
    PHYSICAL REVIEW B, 1976, 14 (10): : 4735 - 4736
  • [32] ELECTRICAL RESISTIVITY OF CUBIC SODIUM TUNGSTEN BRONZE
    ELLERBECK, L
    DANIELSON, GC
    SIDLES, PH
    SHANKS, HR
    JOURNAL OF CHEMICAL PHYSICS, 1961, 35 (01): : 298 - &
  • [33] THERMAL EXPANSION OF A CUBIC SODIUM TUNGSTEN BRONZE
    TAKAMORI, T
    TOMOZAWA, M
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1964, 47 (09) : 472 - 472
  • [34] Oxygen deficiencies and optical absorption in hexagonal tungsten bronze nanoparticles
    Machida, Keisuke
    Okada, Mika
    Adachi, Kenji
    PLASMONICS: DESIGN, MATERIALS, FABRICATION, CHARACTERIZATION, AND APPLICATIONS XVI, 2018, 10722
  • [35] TWINS AND PHASE TRANSITIONS IN SODIUM TUNGSTEN BRONZE
    INGOLD, JH
    DEVRIES, RC
    ACTA METALLURGICA, 1958, 6 (12): : 736 - 747
  • [36] STUDIES OF MOLYBDENUM DOPED POTASSIUM AND CESIUM HEXAGONAL TUNGSTEN BRONZE
    Hussain, A.
    Monir, A. U.
    Rahman, A. N. M. M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 1999, 55 : 487 - 487
  • [37] CONDUCTION PROPERTIES OF THE HEXAGONAL TUNGSTEN BRONZE, RBXWO3
    STANLEY, RK
    MORRIS, RC
    MOULTON, WG
    PHYSICAL REVIEW B, 1979, 20 (05): : 1903 - 1914
  • [38] Superconductivity of sodium tungsten bronze with cubic structure
    Garifyanov, NN
    Khlebnikov, SY
    Khlebnikov, IS
    Garifullin, IA
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1996, 46 : 855 - 856
  • [39] CRYSTAL PREPARATION OF DOPED SODIUM TUNGSTEN BRONZE
    WELLER, PF
    TAYLOR, BE
    MOHLER, RL
    MATERIALS RESEARCH BULLETIN, 1970, 5 (06) : 465 - &
  • [40] ELECTRODEPOSITION OF METALS ON SODIUM TUNGSTEN BRONZE CRYSTALS
    STIRPE, D
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1953, 24 (11): : 1071 - 1071